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ABSTRACT 

This paper reexamines empirical evidence on the effectiveness of environmental regulations in 
India from a recent study by Greenstone and Hanna (GH, 2014). GH report that air pollution 
control policies in India were effective in improving air quality but had a modest and statistically 
insignificant effect on infant mortality. These somewhat counterintuitive findings are likely to 
stem from the limited availability of ground-based air pollution data used in GH and the absence 
of critical meteorological confounders. I leverage recent advances in satellite technology and 
GH’s methodology to test the sensitivity of their findings to revised air pollution outcomes, an 
extended number of observations, and meteorological controls. Despite striking differences 
between the two datasets, reexamination using satellite-based data confirms the conclusions 
drawn from GH’s data. The effects of the policies are, however, substantially weaker. The paper 
urges further research on the effectiveness of environmental regulations in developing countries 
and the use of satellite imagery in the examination of this important question. 
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1   INTRODUCTION 

Substantial health and economic costs of air pollution have forced countries around the world to enact 
increasingly stringent environmental regulations (Botta & Koźluk, 2014). Whether such regulations 
have been effective remains an important policy question, particularly in developing countries that 
suffer from weak institutions, severe air pollution, and limited data availability.  

An American Economic Review paper by Michael Greenstone and Rema Hanna (2014) – henceforth, 
GH – is an important piece of empirical evidence for this line of research. It examines the impact of 
air pollution control policies in India on two integral dimensions of effectiveness: policy-induced 
changes in air pollution and associated changes in infant mortality.1,2 Interestingly, GH report 
somewhat counterintuitively that the policies have been effective in improving air quality but have 
had a modest and statistically insignificant effect on infant mortality.3 A likely explanation for GH’s 
findings might stem from the scarcity of reliable air pollution measures and the effects of unaccounted 
confounding factors. I show that GH’s dataset, which was constructed using readings from a spatially 
sparse network of public air pollution monitors, suffers from high interannual variability in sample 
size, relatively inaccurate measures of air pollution, and the absence of critical meteorological 
confounders. I argue that ignoring these limitations could potentially lead to misleading conclusions 
about the effectiveness of air pollution mitigation efforts.  Coupled with the prominence of GH’s 
study, this conclusion motivates a reexamination of GH’s findings using alternative data sources. 

This paper reexamines the link between environmental regulations, air pollution, and infant mortality 
using new data that were unavailable to GH. I take advantage of satellite-based data to revise air 
pollution measures and to extract meteorological conditions that proved to be important confounders. 
Maintaining GH’s methodology, I test the sensitivity of their findings to the revised air pollution 
outcomes, extended number of observations, and meteorological controls. Thus, comparing results 
using satellite-based to ground-based data used by GH, I present complementing empirical evidence 
on the effectiveness of air pollution control policies in India.  

Based on a careful account of similarities and disparities in the results generated by two data sources, 
it seems reasonable to confirm GH’s findings and interpret air pollution control policies in India as 
effective, although with substantially weaker effects on air pollution. Further research exploring the 
prospects for using satellite-based data will be particularly valuable, especially for developing 
countries. Such research will be critical in uncovering the effects of environmental regulations and 
recommending sensible interventions to mitigate the environmental burden of air pollution and to 
protect population health.  

                                                
1   GH also assess the effects of water pollution regulations, but I focus exclusively on the part of GH’s paper that analyzes the 

effectiveness of air pollution regulations. 
2      Matus et al. (2012) show that health costs account for 71.4% of total air pollution-induced welfare losses in China and that mortality 

captures around 86% of those losses. Others have shown that mortality impacts associated with air pollution are strongest for 
infants (Ebenstein et al.; 2015, Tanaka, 2015). Compared to adults, infants’ deaths lead to larger losses in life expectancy.  

3      GH’s findings contradict the conclusions of others in the literature. There is a substantial body of causal evidence that the regulation-
induced improvements in air quality in developing countries lead to a decline in infant mortality. For example, see Foster, Gutierrez, 
and Kumar (2009), Ebenstein et al. (2015), Tanaka (2015), He, Fan, and Zhou (2016), Cesur, Tekin, and Ulker (2016). 
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2   REVIEW OF GREENSTONE AND HANNA (2014) 

Using a panel of 140 Indian cities for the years 1987-2007, GH assess the impact of the Supreme 
Court Action Plans (SCAP) and the Mandated Catalytic Converters (CAT) on air pollution and infant 
mortality. Both policies belong to the command-and-control instruments and were at the forefront of 
India’s environmental regulation since the 1970s. SCAP are a suite of policy actions aimed at 
reducing pollution in the cities identified by the Supreme Court of India as critically polluted. SCAP 
typically vary across cities and can take different forms depending on the type of targeted air 
pollutant.4 CAT requires new cars to be equipped with a catalytic converter – an exhaust emission 
control device aimed at reducing toxic gases and pollutants in the exhaust gas by converting them 
into less harmful pollutants using catalyzing reaction. There are two distinctive features of this 
regulation. First, its enforcement is stringent as vehicle registrations are tied to the installation of 
catalytic converters. Second, its impact obviously increases over time with the increase in the share 
of newer vehicles (Greenstone, Harish, Pande, & Sudarshan, 2017).  

SCAP and CAT policies can plausibly affect air pollutants analyzed in GH: nitrogen dioxide (NO2), 
sulfur dioxide (SO2), and suspended particulate matter (SPM). NO2 stands out as an indicator of 
vehicular pollution, SO2 – as a by-product of thermal power generation, and SPM, particulate matter 
less than 100 micrometers (μm) in diameter, – as a general indicator of air pollution. All three are 
widely considered to cause serious health and economic costs. 

GH’s empirical strategy combines event study and difference-in-differences designs in a two-step 
econometric approach. At the first step, the approach measures average annual levels of air pollutants 
and infant mortality in the pre and post policies’ adoption periods, while in the second step, it tests 
for the policies’ impact. Equations (1) and (2) correspond to the first and second-step specifications. 
Together, these equations represent GH’s preferred specification that controls for city fixed effects, 
year fixed effects, preexisting differential trends in the outcomes, and allows for a mean shift and 
trend break after the policies’ implementation. Identifying variation comes from the variation in the 
timing of the policies’ enactment across cities. 

 (1) 

where  is an outcome variable measuring either concentrations of air pollutants or infant mortality 
rate in city c in year t.  is a vector of indicator variables for each year before and after a policy 
is in force.  is normalized so that it is equal to zero in the year the policy was enacted; it ranges from 
−17 (for 17 years before a policy’s adoption in a city) to 12 (for 12 years after its adoption). For the 
nonadopting cities,  are equal to zero. is a set of additional control variables (consumption per 

                                                
4   Action plans for vehicular pollution include an odd-even program for private cars, compulsory retirement of old vehicles, or 

restrictions on the use of heavy vehicles, while plans that regulate industrial pollution include the mandated reallocation of heavily 
polluting industries, installation of specific abatement technologies, or bans on production processes. 
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capita and literacy rates).  – year fixed effects to control for year-specific common shocks for all 
cities;  – time-invariant city fixed effects to control for the permanent unobserved determinants of 
the outcome variable across cities. Equation (1) is weighted by the district-urban population in air 
pollution estimations and by the number of births in infant mortality estimations. The coefficients of 
interest  measure the levels of average annual outcomes in the pre- and postadoption periods. The 
estimated coefficients  are then fit into equation (2) that corresponds to the equation (2C) in GH. 

 (2) 

where  is a dummy variable that takes on the value 1 to indicate that the policy is in force; 
 is a linear time trend to control for the differential preexisting trends in adopting cities. 
 allows for the policies’ effects to evolve over time;  – heteroskedastic-consistent standard errors. 

GH weight equation (2) by the inverse of the standard errors for the relevant  to account for 
differences in precision in the ’s estimation. The specification tests for a policy impact after 
adjustment for the trend in outcome variable ( ), and allows for both a mean shift ( ) and trend 
break ( ). From this equation, GH also report the policies’ effects five years after implementation, 

. They then complement a two-step approach by its numerically identical one-step version.5 

GH’s central result is that the Mandated Catalytic Converters policy was strongly associated with air 
pollution reduction. Specifically, five years after the policy was in force, SPM and SO2 concentrations 
declined by 48.6 μg/m3 and 13.5 μg/m3, or 19% and 69% of the 1987–1990 nationwide mean 
concentrations. The impact of the CAT policy on NO2 was a statistically insignificant decline by 4.4 
μg/m3 or 19% of the 1987–1990 nationwide mean concentrations. In contrast, the Supreme Court 
Action Plans resulted in a marginally statistically significant decline in NO2 concentrations without 
any evidence of an impact on SPM and SO2. GH then proceed with the CAT policy, i.e. the one that 
was found to be the most strongly related to improvements in air quality, to show that the policy 
resulted in a modest and statistically insignificant decline in infant mortality. 

                                                
5      The specification below represents a one-step version of the two-step approach. GH include both policies into the one-step approach 

and limit the policies’ dummies to the observed event years to preserve the comparability with the two-stage approach, specifically 
20 city years for CAT and 15 city years for SCAP.  

 

 
 

 
 

 

 is a dummy variable for – 7  3 and  is a dummy variable for – 7  9;  
and  are the policy dummies that indicate whether  or  policies are in force and that take on the value 1 for the 
adopting cities with  and/or ;  and  are dummies indicating that –7 or 3, respectively; by 
analogy,  and  indicate that –7 or 9, respectively;  and 

 are a linear time trend variables interacted with a policy range dummies;  and 
 are policy*time-trend*policy-range interaction terms;  – standard errors clustered at the city-level 

(Bertrand, Duflo, & Mullainathan, 2004).  
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3   DATA 

I reexamine the effectiveness of air pollution control policies combining GH’s original datasets with 
new and improved data. GH undertook an extensive data-collecting exercise and made resulting 
datasets and Stata do-files publicly available.6 I use GH’s data on environmental regulations, infant 
mortality, and sociodemographic characteristics without modification. Instead, I revise data on air 
pollution outcomes and add key meteorological confounders absent in GH’s paper. 

3.1   GH’s data limitations 

A. Air pollution data 

GH’s air pollution data came from India’s Central Pollution Control Board (CPCB), which operates 
a national network of ground-based monitoring stations. GH obtained monthly city-by-state monitor 
readings for NO2, SO2, and SPM concentrations from a spatially sparse network of 572 monitors in 
140 cities.7 To calculate the annual average concentrations for each city, GH took a simple average 
of the monthly average concentrations for the monitors within the city.  

GH’s final air pollution dataset has two major issues. First, the sample size is substantially restricted 
and highly variable. Column 1 of Table 1 tabulates the number of cities in GH’s sample with at least 
one monitor reading in a particular year. Thus, the city counts in this column represent the maximum 
possible number of the cities available for the analysis in a given year. This number varies 
substantially because CPCB’s monitor readings are not available for all years for most of the cities. 
Only 20 of 140 cities were covered by the monitoring network in 1987, while 115 cities were 
monitored by 2007. Another concern is that some of the monitors were not operating for a whole 
sample of cities, were not functioning appropriately, or were moved and reclassified over the years. 
These reasons may explain the substantial variability in GH’s sample size over time. As column 1 
indicates, the number of cities was steadily increasing until 1993 when it reached 65. Then, the sample 
size declined sharply to 42 cities in 1995, rapidly increased to 73 in 1997, dropped again to 54 in 
2001, and continued growing until it peaked in 2007 with 115 cities. The variability appears high, 
although GH do not discuss this issue in detail. GH further restricted the sample of cities based on 
the availability of air pollution data. Policy-adopting cities were included in the analysis if they had 
at least one observation three or more years before the policy’s implementation and at least one 
observation four or more years after. Non-adopting cities and adopting cites without post-policy 
pollution data were included if they had at least two air pollution readings.  

 
 

                                                
6     I downloaded GH’s data and Stata code from the AER website. 
7     For comparison, the U.S. network of ground-based monitors that measure ambient PM concentrations consists of around 1200 

monitors. This network covers 63% of the U.S. population in less than 20% of U.S. counties and is still considered spatially sparse 
by researchers (Sullivan & Krupnick, 2018; Fowlie, Rubin, & Walker, 2019). 
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Table 1 – Number of cities and prevalence of air pollution control policies 
 

 

 
 

Notes: The table corresponds to GH’s Table 1. SCAP and CAT stand for the Supreme Court Action Plans 
and the Mandated Catalytic Converters. Column 1 shows the number of the cities that have at least one air 
pollution reading in the particular year. Those numbers represent maximums out of 140 cities (column 2) 
used in GH. Columns 3 and 4 show the number of cities where the specified policy was implemented. 
 

Second, measures of the city-level concentrations might be relatively inaccurate. Several problems 
can emerge when using a sparse network of monitors to infer air pollution levels. First, there can be 
significant discrepancies between the monitor’s readings and surface concentrations because of air 
pollution’s physical properties. The fundamental issue is that air pollution can both vary sharply over 
short distances with higher concentrations downwind of the source of emission and travel long 
distances from its source being dispersed by wind or washed away by rain. Therefore, the further a 
particular location is from a monitor, the less accurate is the measure of concentration inferred from 
this monitor for this location (Sullivan, 2016; Sullivan & Krupnick, 2018). Second, evidence shows 
that local officials can manipulate ground-based pollution readings, particularly in developing 
countries (Andrews, 2008; Chen, Jin, Kumar, & Shi, 2012; Ghanem & Zhang, 2014). Such 
manipulations can take the form of strategically placing monitors in less polluted parts of the cities, 
relocating monitors from locations downwind of polluters to locations upwind, or even spraying water 
over monitors to decrease local pollution concentrations (Fan & Grainger, 2019). Third, the 
aggregation method used in GH can also cast doubt on the accuracy of measurements. A monitor 
measures concentration from a single point in space to represent a concentration over a city, in which 
neighborhoods can have a varying landscape, wind pattern, population density, and emission sources. 
However, in 2007, 18% of sample cities did not have a SPM monitor, 21% had one monitor, 31% 
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had two monitors, and 16% had three. Thus, an aggregation by a simple averaging can be highly 
misleading. Ideally, the computation of air pollution levels that relies on data obtained from ground-
based monitors should include the interpolation of monitor-level data into the surface.8 The outcomes 
of this procedure, i.e. average concentrations at every grid point, can then be temporally and spatially 
aggregated by averaging concentrations at all grid points that fall within the cities’ administrative 
boundaries. Following these steps, one can accurately measure the city-level pollution concentrations 
over time. 

B. Meteorological data 

Additionally, GH’s dataset does not include meteorological conditions. Not controlling for these 
conditions can potentially confound GH’s findings because of the significant impact of 
meteorological conditions on air pollution and infant mortality. Apart from anthropogenic emissions, 
meteorological forces are the primary factors that shape air pollution trends over cities around the 
world.9 They play a critical role in dispersion, transformation, transport, removal of air pollutants in 
the atmosphere and can exacerbate or mitigate their concentrations (Zhong et al., 2018; Li et al., 2019; 
He at al., 2019; Zhou et al., 2020). Rain can wash air pollutants away and high wind speeds disperse 
them, lowering concentrations. Low wind speeds coupled with low winter temperatures and thermal 
inversions tend to worsen air quality, increasing concentrations. In turn, these processes also affect 
infant mortality, indirectly through the impact on air pollution or directly (Goyal, 2002). Many studies 
find statistically significant effects of extreme air temperature, rainfall, and humidity on infant 
mortality in developed and developing countries (Deschênes & Greenstone, 2011; Kudamatsu, 
Persson, & Strömberg, 2012; Gasparrini et al., 2015; Barreca, 2016; Heutel, Miller, & Molitor, 2017; 
Burgess et al., 2017; Geruso & Spears, 2018). Thus, ignoring considerable fluctuations in 
meteorological conditions can lead to misleading conclusions about the effectiveness of air pollution 
mitigation efforts. In line with this argument, Sullivan (2016) formally shows that economic studies 
underestimate the effects of changes in air pollution exposure, including those induced by exogenous 
shock, because of the bias that arises when researchers do not account for meteorological 
confounders, specifically for wind speed. It has been shown that at the time of writing GH, publicly 
available in-situ monitor readings of meteorological conditions in India were highly sparse and erratic 
(Burgess et al., 2017). That likely explains the absence of these data in GH’s dataset, despite an 
extensive data collection exercise. 

Nevertheless, high variability in the interannual sample size, relatively accurate measures of air 
pollution concentrations, and the absence of important meteorological confounders motivate a 
reexamination of GH’s findings using alternative data sources. 

                                                
8    This can be usually achieved using spatial interpolation methods such as inverse distance weighting or Kriging. 
9   For example, variation in meteorological conditions explains more than 70% of daily variations in five air pollutants in major 

Chinese cities during the 2014-2015 period (He et al., 2017) and up to 50% of daily PM2.5 variation in the US during the 1998-
2008 period (Tai, Mickley, & Jacob, 2010). 
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3.2   New and revised data 

A. Revised air pollution outcomes 

To address the issues with GH’s air pollution data, I leverage recent advances in satellite technology. 
I construct air pollution outcomes, i.e. annual city-level averages of fine particulate matter (PM2.5) 
and sulfur dioxide (SO2), from the satellite-based Aerosol Optical Depth (AOD) retrievals.10 AOD 
measures the amount of sunlight absorbed, reflected, and scattered by particles suspended in the air. 
Satellite observations of AOD make it possible to estimate surface PM2.5 and SO2 concentrations at 
granular spatial resolution and with comprehensive geographical and temporal coverage. AOD-based 
estimates are a good proxy of air pollution over India (Dey et al., 2012). 

I replace GH’s SPM by the satellite-based estimates for PM2.5, also particulate matter but with a 
diameter less than 2.5 μm. PM2.5 is a fraction of SPM and is a more sophisticated exposure indicator.11 
An increasing number of social scientists focus on PM2.5 to study the effectiveness of environmental 
regulations, health effects, and the economic impacts of pollution exposure (Voorheis, 2016; Chen, 
Oliva, & Zhang, 2017; Fu, Viard, & Zhang, 2017; Sullivan & Krupnick, 2018; Fowlie, Rubin, & 
Walker, 2019). PM2.5 data were unavailable to GH as PM2.5 monitoring in India started only in 2009 
after the second revision of the national air quality standards. 

I obtained satellite-based estimates for PM2.5 and SO2 concentrations from NASA’s  Modern-Era 
Retrospective Analysis for Research and Applications, version 2 (MERRA-2; GMAO, 2015).12 
MERRA-2 data result from atmospheric reanalysis that combines satellite-based measurements of 
AOD, ground-based monitor readings, and other sources with sophisticated chemical-transport and 
climate modeling to create gridded estimates for surface air pollution variables. MERRA-2 reanalysis 
data are widely used in various studies due to their high quality, granular spatial and temporal 
resolutions, and diverse atmospheric variables (Chen et al., 2017; Fu et al., 2017; He et al., 2019). 
MERRA-2 is the only alternative that provides estimates for PM2.5 and SO2 concentrations for GH’s 
sample years, 1987-2007. For comparison, another source of air pollution data popular among social 
scientists, van Donkelaar et al. (2019), provides estimates for PM2.5 concentrations starting only from 
1998. Therefore, MERRA-2 is my preferred source of data for air pollution outcomes.  

MERRA-2 provides global gridded data of monthly means at 0.5º x 0.625º spatial resolution 
(approximately 56km x 69km at the equator). Estimates for SO2 concentrations are readily available, 
while PM2.5 concentrations need to be calculated using estimates for PM2.5 components: dust 
(DUST2.5), sea salt (SS2.5), black carbon (BC), organic carbon (OC) and sulfate particulate (SO4).13 I 
follow the literature from atmospheric science, Buchard et al. (2016), and apply equation (3) to 

                                                
10    Data on NO2 concentrations are not readily available for the temporal and geographic scope required for GH’s reexamination. 
11    Smaller PM2.5 particles penetrate the deeper alveolar region of the respiratory tract and thus could more likely to cause premature 

mortality and severe morbidity than GH’s SPM (Schwartz, Dockery, & Neas, 1996; U.S. EPA, 2004; WHO, 2006a). 
12   M2TMNXAER product, version 5.12.4. 
13  Sources of SO4 (sulfate), BC and OC (carbonaceous) are emissions from power plants, vehicle exhaust, and biomass burning.   

Dust2.5 comes from local arid sources or transported from abroad by dust storms. SS2.5 penetrates the land from the seas and oceans. 
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calculate PM2.5 concentrations at every grid point. Figure 1 maps the resulting spatial distribution of 
MERRA-2 PM2.5 and SO2 pollution in India. Panels A and B show long-run average PM2.5 and SO2 
concentrations in  for 1987-2007. The figure depicts higher levels of air pollution with the 
shades of red color. For PM2.5, broad areas in North-West India, Gangetic Plains, and northern regions 
of Central India are well above national and WHO air quality guidelines, which are annual averages 
of 40  and 10 , respectively. Even though there are observable SO2 hot spots, most of 
India is in rough compliance with the national standard, which is 50 . 

            (3) 

Panel A. Average PM2.5, 1987-2007 
 

Panel B. Average SO2, 1987-2007 

 

Figure 1. Spatial distribution of air pollution concentrations in India, 1987-2007 
 

Notes: The figure maps spatial distributions of PM2.5 and SO2 concentrations constructed using MERRA-2 
reanalysis products. Panels A and B show long-run average PM2.5 and SO2 concentrations in  for 1987-2007, 
respectively. Shades of red color depict higher concentrations of the specific air pollutants. 

 
To map MERRA-2 air pollution concentrations to the city level, I construct urban extent polygons 
that correspond to the cities’ administrative boundaries using 2011 ML InfoMap’s digital maps.14 
The definition of what to consider a city is a major challenge as GH do not provide any information 
about this. I rely on the operational definition of an urban area (town) adopted by the Office of the 
Registrar General & Census Commissioner of India as, I believe, GH also did by default.15 They 

                                                
14  State-wise ML InfoMap village (and town) boundary polygons represent a digital map that provides socio-demographic and 

economic census data in GIS file format. I downloaded ML InfoMap’s shapefiles from the Princeton University Digital Maps & 
Geospatial Data Library during my research visit. 

15   The Office of the Registrar General & Census Commissioner of India is the central authority in charge of the population (Census) 
and vital statistics. The Census statistics for urban areas (towns) comprises two types of towns, namely Statutory towns and Census 
towns. Statutory towns are all places with a municipality, corporation, cantonment board or notified town area committee. Census 
towns are defined as a place satisfying three criteria simultaneously: (i) a minimum population of  5000; (ii) at least 75% of the 
male working population engaged in non-agricultural activities; (iii) a density of population of at least 400 persons per km2 (Census 
of India 2011).  
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retrieved data from the official administrative sources, and I assume that Indian government agencies, 
including CPCB, define administrative units uniformly. The list of the cities was obtained from GH’s 
Stata do-files and Vital Statistics of India, while the cities’ geometry from the maps in the India 
District Census Handbooks 2011.16 ML InfoMap’s digital maps depict cities’ administrative 
boundaries as of 2011, a year that is outside of GH’s study period of 1987-2007. Whenever possible, 
I adjust the resulting polygons so that they correspond to the cities’ administrative boundaries as they 
were at the time of the 2001Census. Most of the District Census Handbooks contain Table 3 that 
provides a list of new towns, denotified, declassified, and merged during the decade of 2001-2011. 
Exploiting this information, I retrieve ML InfoMap’s administrative boundaries polygons net of 
2001-2011 changes. In rare cases in which the ML InfoMap’s digital maps do not contain cities’ 
boundaries, I geo-reference and digitize them using maps from the District Census Handbooks. For 
some of the larger cities, their administrative boundaries consist of several ML InfoMap polygons, 
which I merge to obtain a single polygon for each city.  

Overall, I selected the final sample of 140 polygons from about 619,000 across 28 Indian states. 
Appendix Figures 1 through 5 highlight the construction of the resulting cities’ administrative 
boundaries. Finally, I average monthly MERRA-2 PM2.5 and SO2 concentrations to annual levels and 
then take an average of annual average concentrations at all MERRA-2 grid points that fall within 
the cities’ administrative boundaries. The final dataset represents city-by-year annual PM2.5 and SO2 
average concentrations for the years 1987-2007. Figure 2 shows the exact geometry and location of 
the constructed urban extent polygons and examples of cities with already assigned concentrations of 
PM2.5 and SO2 air pollution. 

B. Concerns about revised air pollution outcomes 

Resulting estimates of the city-level average concentrations of air pollution are not immune to 
plausible concerns. The first two pertain to MERRA-2 data and the approach I use to construct the 
cities’ administrative boundaries, while the last one is common to all satellite-based estimates.  

MERRA-2 PM2.5 data lack nitrate particulate matter, an important PM2.5 component and precursor, 
primarily emitted by vehicle exhaust and industrial activities (Buchard et al., 2016; He et al., 2019). 
Thus, resulting from the equation (3), estimates of PM2.5 concentrations can underestimate ground-
based PM2.5 measurements. As a sensitivity test, I construct estimates for PM2.5 concentrations for 
the years 1998-2007 using van Donkelaar et al. (2019) and compare them with MERRA-2 PM2.5 
concentrations. Previous studies point on a good match between van Donkelaar’s PM2.5 estimates and 
ground-based PM2.5 observations (van Donkelaar et al., 2013; He et al., 2019). Therefore, a high 
correlation coefficient between MERRA-2 and van Donkelaar’s PM2.5 estimates (91%) provides 
evidence for high consistency between them and relaxes the MERRA-specific concern.  

                                                
16   Princeton University also granted access to the annual  issues of the Vital  Statistics of India. India  District  Census Handbooks 

depicting district-wise village and town administrative boundaries as of 2011 were downloaded from the website of the Census of 
India. 
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Panel A. City-level administrative boundaries 
 

 
 

Panel B. Average PM2.5, a closer look Panel C. Average SO2, a closer look 
 

 
 

 

 

 

Figure 2. Cities’ administrative boundaries with assigned air pollution levels 
 

Notes: The figure denotes all cities from the full sample with the resulting administrative boundaries. Panel A depicts the 
cities preserving their exact geometry and location across India. Panels B and C show examples of the cities with already 
assigned levels of PM2.5 and SO2 pollution in  for randomly selected year 2004. Shades of red color depict higher 
concentrations of the specific air pollutants. The cluster of four cities at the center represents the capital city of Delhi 
(National Capital Territory), Ghaziabad and Noida (Uttar Pradesh), and Faridabad (Haryana). Despite the spatial proximity 
of these cities, the approach that I use to construct their exact urban extent polygons allows me to assign air pollution to 
each of these cities and to analyze them as separate administrative units. PM2.5 and SO2 pollution measures are constructed 
using the MERRA-2 reanalysis product and represent annual average concentrations at the city’s level. 
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The approach I use to construct the cities’ administrative boundaries might also be subject to concern. 
As I use ML InfoMap’s digital maps with administrative boundaries as they were at a single year, the 
resulting urban extent polygons do not trace the cities’ spatial expansion at different points in time. 
However, Seto et al. (2011) show that Indian cities were expanding at an average annual rate of 4.84% 
between 1970 and 2000. This evidence raises the possibility that the approach I adopt in this paper 
can potentially lead to measurement error. Generally, too narrowly or too broadly defined boundaries 
of urban footprints may affect an assignment of air pollution. Nevertheless, I believe that this is not 
a major concern, and my approach is preferable to other available alternatives. I pursued the goal of 
constructing urban extent polygons separately for each city in GH’s sample and preserving 
consistency with GH’s default definition of a city. However, the most commonly used alternative 
approach for the delineation of urban areas, night-time lights satellite imagery, fell short in achieving 
this goal. Appendix Figure 6 provides an illustration. The figure compares urban extent polygons 
defined by the cities’ administrative boundaries in this study with those defined by the combination 
of the night-time lights and buffered settlement centroids in the Global Rural-Urban Mapping Project 
(GRUMP).17  

Two apparent observations arise. First, urban areas retrieved from the night-time lights dataset do not 
correspond to their Census counterparts, making it impossible to obtain a single polygon for each 
city. For example, the cluster of four cities at the center of the figure includes the capital city of Delhi, 
Ghaziabad, Noida, and Faridabad. Despite spatial proximity, the approach I use allows me to analyze 
these cities as separate administrative units. In contrast, GRUMP’s output is a single polygon, a multi-
city agglomeration that extends beyond the administrative boundaries of these four cities and 
additionally includes the city of Meerut 70 kilometers away from Delhi to the North-East.18  

Second, even if both approaches result in a single polygon for each city, the polygons retrieved from 
the night-time lights are larger than the polygons represented by the cities’ administrative boundaries. 
This observation suggests that GRUMP polygons overestimate the extent of the cities. The GRUMP 
relies on the 1994/1995 stable city night-time lights dataset, meaning that the resulting output exhibits 
boundaries of urban areas as of 1995. However, given the evidence above of Seto et al. (2011), it is 
highly unlikely that the ML InfoMap polygons of the adjusted cities’ administrative boundaries as of 
2001 were smaller than the corresponding GRUMP polygons as of 1995. Thus, I believe that the 
approach used in this paper performs well and matches the goal better.   

Finally, a limitation common to all satellite-based estimates is that such estimates are just a reflection 
of the actual air pollution concentrations and are prone to prediction and forecast errors. Fowlie et al. 
(2019) highlight the importance of accounting for these errors. In this study, however, it is difficult 
to perform such a check because of the limited availability of reliable ground-based air pollution 

                                                
17  More information about the GRUMP can be found at https://sedac.ciesin.columbia.edu/data/collection/grump-v1/about-us.  
18 This is because the approach based on the night-time lights satellite imagery delineates urban areas by considering spatially 

contiguous lighted pixels surrounding a city’s coordinates, with luminosity above a pre-defined threshold. 
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measurements for India. In general, a comprehensive analysis of this issue is yet to be discussed in 
the literature and is beyond the scope of this paper. 

C.   New meteorological data 

To control for the effects of the meteorological conditions on air pollution and infant mortality, I 
collect data on air temperature, precipitation, and wind speed.19 Specifically, I obtain raw data on 
these covariates from various MERRA-2 reanalysis products and process them the same way as air 
pollution data to construct variables at the city-by-year level.20 MERRA-2 temperature and 
precipitation data have been successfully validated against the observation-based Indian 
Meteorological Department data, indicating that MERRA-2 products are reliable substitutes to the 
observed weather indicators (Ghodichore et al., 2018; Gupta et al., 2020). 

I control flexibly for meteorological confounders by including  into equation (1) and a one-
step version of GH’s two-step approach.  is a set of meteorological covariates that includes a 
count of the number of days each year in which the average daily temperature falls into 10 temperature 
bins, precipitation calculated as the annual sum from daily observations and its quadratic, and a count 
of the number of days each year in which the average daily wind speed falls into 12 wind speed bins.  

In particular, to estimate the effects of daily temperatures on annual outcomes, I follow a widely-used 
method that transforms an annual distribution of daily temperatures into a set of temperature bins 
(Deschênes & Greenstone, 2011; Deryugina & Hsiang, 2014; Cheng & Yang, 2017; Zhang et al., 
2018). This approach allows flexible estimation of nonlinear temperature effects across daily 
temperature values. In practice, a vector of temperature bins, , denotes the number of days in 
year  with daily average temperatures in city  that fall into the th temperature bin, 1,2,…,10. 
Following Burgess et al. (2017), I divide daily average temperatures, measured in °C, into ten bins, 
each of which is 3 °C wide. For example,  is the number of days in city  during year  with 
daily temperature below 12 °C. Then,  is the number of days with temperature above 35 °C. 
To avoid collinearity, the temperature bin [21°C, 23 °C) is set as an omitted, reference category.  

A vector of wind speed bins, , is constructed similarly, but bins are defined as a Beaufort 
wind scale. I distributed daily average wind speeds, measured in knots, between 12 categories that 
characterize wind force from calm to hurricane.  

3.3   Comparison of trends 

Figure 3 compares trends in air pollution outcomes constructed using CPCB data exploited by GH 
and the data obtained from MERRA-2 products. Panels A and B plot the city-level average 

                                                
19    Most of the relevant studies in economic literature control at least for air temperature and precipitation. However, Sullivan (2016) 

and Zhang, Zhang, and Chen (2017) demonstrate the importance of additional meteorological covariates, especially humidity and 
wind speed.  

20   M2I1NXLFO product for air temperature and wind speed; M2T1NXLND product for precipitation 
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concentrations of particulate matter and SO2 for the years 1987-2007. Left-hand graphs in both panels 
show SPM and SO2 trends in GH’s data for the restricted sample of cities used in GH.21 Right-hand 
graphs show trends in MERRA-2 PM2.5 and SO2 for the full sample of 140 cities, while the middle 
graphs plot the trends for the same pollutants across GH’s sample of cities. Compared to GH’s data, 
revised air pollution outcomes yield substantially more city-by-year observations: 2,940 against 1,370 
and 1,344 for GH’s particulate matter and SO2, respectively. I refer to these observations as the GH 
sample and the full sample. Table 2 provides the corresponding sample statistics for both ground-
based and satellite-based data. The table reports the city-level averages, the number of observations, 
the tenth and ninetieth percentiles of air pollution outcomes, meteorological variables, and infant 
mortality rate, broken down by the whole of GH’s study period, early (1987-1990), and later (2004-
2007) periods of the sample.  

 

Panel A: Particulate air pollution 
 
 

 
Panel B: Sulfur dioxide pollution 

 
 

 
Figure 3. Trends in air pollution, 1987-2007 

 
Notes: The figure plots annual city-level average concentrations of particulate air pollution (Panel A) and SO2 (Panel B). 
Left-hand graphs show SPM and SO2 trends in GH’s data for their restricted sample of cities. Right-hand graphs in Figure 
3 show trends in PM2.5 and SO2 estimates for the full sample of 140 cities, while the middle graphs plot the trends for the 
same pollutants across GH’s sample of cities. GH’s air pollution data were drawn from the CPCB ground-based monitoring 
network, while the revised air pollution data - from the MERRA-2 satellite-derived estimates. 
 

                                                
21   These graphs correspond to the first two graphs in panel A of GH’s Figure 4. 
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The striking finding that immediately emerges from Figure 3 is the opposite air pollution trends in 
GH’s data relative to MERRA-2 data. While SPM and SO2 levels were falling in GH, concentrations 
of the revised air pollution outcomes are continuously increasing. As Table 2 indicates, 
concentrations of GH’s SPM fall steadily from 252.13  during 1987-1990 to 209.42  
during 2004-2007, or a 17% reduction. SO2 concentrations are quite stable until the late 1990s but 
then decline sharply from the 1987-1990 levels, overall, by 37% during 2004-2007, from 19.36 to 
12.19 . In contrast, the concentrations of MERRA-2 PM2.5 increase by 68% in 2004-2007 
compared to 1987-1990, from 22.63 to 37.92  for GH’s sample of cities. Similarly, MERRA-
2 SO2 concentrations increase by 24%, from 6.36 to 7.89 . The increase in the revised air 
pollution outcomes is even more pronounced for the full sample of cities, 75% and 85% for PM2.5 
and SO2, respectively.  

 

Table 2 – Comparison of Summary Statistics 
 

 
 

Notes: This table provides summary statistics on air pollution, meteorological variables, and infant mortality. GH’s air pollution data are 
the annual city-level average SPM and SO2 concentrations constructed using CPCB ground-based monitoring network, and PM2.5 converted 
from SPM using SPM-PM10-PM2.5 ratios. New air pollution data are the revised PM2.5 and SO2 air pollution outcomes derived using 
MERRA-2 satellite-based estimates. GH’s sample corresponds to the number of cities used in GH. The number is restricted by the 
availability of the ground-based air pollution monitor readings. The full sample contains a panel of 140 cities used in the GH reexamination. 
Columns with meteorological variables provide summary statistics on city-level air temperature, precipitation, and wind speed constructed 
using various MERRA-2 products. Construction of GH and revised air pollution outcomes, as well as meteorological covariates, is 
described in detail in the text. Infant mortality data are taken from GH without modification. The sources of infant mortality data include 
the Vital Statistics of India from various years and some offices of the state registrar. 
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Appendix Figure 7 provides additional evidence on the opposite trends. It compares kernel density 
estimates of GH’s and revised air pollutant distributions across Indian cities for two periods, 1987-
1990 and 2004-2007. While GH’s entire SPM and SO2 distributions shifted to the left, the opposite 
shift is apparent for the pollutants derived using MERRA-2 reanalysis data. The shift to the right is 
particularly substantial for MERRA-2 PM2.5. As Table 2 reports, the tenth and the ninetieth 
percentiles of GH’s SMP and SO2 concentrations demonstrate a decline between two periods: about 
10% in the tenth percentiles for both pollutants, 5% in the ninetieth percentile for SPM and 40% in 
the ninetieth percentile for SO2. In contrast, the distributions of MERRA-2  PM2.5 and SO2 
concentrations worsened substantially, with striking increases in the tenth percentiles by about 50% 
and in the ninetieth percentiles by 100% for the full sample. 

The difference in trends between GH’s SPM and MERRA-2 PM2.5 cannot be explained by the fact 
that SPM and PM2.5 are not directly comparable pollutants. I convert GH’s SPM concentrations into 
PM2.5 concentrations applying SPM/PM10 and PM10/PM2.5 ratios used in Nilekani (2014) and 
Greenstone et al. (2015).22 Column 2 of Table 2 demonstrates the summary statistics for GH’s PM2.5 
air pollution. The results are qualitatively similar in terms of the difference in trends between GH’s 
SPM/PM2.5 and MERRA-2 PM2.5.  

Several potential explanations for such a dramatic difference in the observed air pollution trends relate 
to the arguments summarizing issues with GH’s data and highlighting the advantages of the satellite-
derived estimates relative to ground-based measures. Specifically, the limited availability of air 
pollution data and the problems with using a sparse ground-based monitoring network can explain an 
unusual year-to-year spike-and-drop pattern in GH’s SPM/PM2.5 concentrations (left-hand graph in 
panel A of Figure 3). MERRA-2 reanalysis products have been compiled consistently during GH’s 
study period and potentially provide a more reliable air pollution measure. Indeed, the trends in the 
revised air pollution outcomes correspond well with the similar trends documented in other recent 
studies and perfectly reflect numerous concerns about increasingly deteriorating air quality in China 
and India over the past decades (Greenstone et al., 2015; Ebenstein et al., 2015; Chen et al., 2017). A 
similar trend in particulate air pollution is also indicated by PM2.5 estimates constructed for the period 
1998-2007 using van Donkelaar et al. (2019).  

However, sharp increases in the trend of MERRA-2 PM2.5 in 2000 and 2007 look suspicious. 
Appendix Figure 8 shows the trends in the components of this pollutant that shed some light on the 
developments in PM2.5 air pollution. The left-hand graph of panel B shows that the first episode of 
the substantial increase in PM2.5 concentrations in 2000 can be explained by the spike in DUST2.5 that 
was likely caused by dust storms (Prasad & Singh, 2007). The second episode in 2007 is likely 
attributable to the mutually magnifying effects of the simultaneous increase in concentrations of SO4, 
Organic and Black Carbons. With the peak in PM2.5 air pollution in 2008, the worsening of air quality 
in 2007 could be associated with the accelerating economic growth during the pre-crisis wave of 
globalization accompanied by the increasing trends in industrialization, fast-growing population and 
deterioration of the natural environment (CPCB, 2014). During other years, a continuously rising 
                                                
22   PM10 is a fraction of SPM; PM10 is particulate matter with a diameter less than 10 μm. PM10 = 0.5053SPM, PM2.5=0.438PM10 
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trend in MERRA-2 PM2.5 was predetermined by Black and Organic Carbons, the products of the 
anthropogenic emissions. 

The comparisons in Figure 3 and Table 2 indicate that the trends in particulate and SO2 air pollution 
outcomes constructed using GH and MERRA-2 data differ substantially. This conclusion suggests 
that the reexamination of the empirical evidence on the effectiveness of environmental policies using 
revised air pollution outcomes, extended number of observations, and meteorological controls may 
lead to different results than those estimated by GH.  

4   THE EFFECTS OF REVISED AIR POLLUTION OUTCOMES 

In this section, I maintain GH’s methodology to test the sensitivity of their findings to the revised air 
pollution outcomes and the extended number of observations. Table 3 demonstrates the effects of 
these revisions by reporting the estimated impacts of the SCAP and CAT policies on PM2.5 and SO2 
air pollution. For each policy-pollutant and data-sample combination, the table reports estimates from 
fitting equation (2) and its one-step analog. Exactly following GH’s methodology ensures that the 
differences in the results stem only from the differences in air pollution data.  

Columns 1-2 replicate GH’s results using their data. The outcome variables in these columns are the 
city-level annual average PM2.5 and SO2 concentrations. PM2.5 here is an indicator of particulate air 
pollution converted from GH’s SPM using SPM-PM10-PM2.5 ratios. I use GH’s PM2.5 for consistency 
as I focus on MERRA-2 PM2.5 in the following reexamination. Appendix Table 1 compares 
replication results using GH’s SPM and PM2.5 as the outcome variables. The results are qualitatively 
similar in terms of the sign and statistical significance of the coefficients. Relying on this comparison, 
I use GH’s PM2.5 in the rest of the analysis. I successfully reproduce GH’s results, confirming that 
the CAT policy is strongly associated with the reduction in PM2.5 and SO2 concentrations five years 
after the policy implementation by 10.75 μg/m3 and 13.45 μg/m3, or 19% and 69% of the 1987–1990 
nationwide mean concentrations. The coefficients on policy dummy are not statistically significant 
and suggest a decline only in the case of SO2 pollution. However, panels C and D point to a negative 
and statistically significant break in PM2.5 and SO2 trends caused by the CAT policy.  

Columns 3-4 use the same sample of cities as in GH but replace original air pollution outcomes by 
MERRA-2 PM2.5 and SO2. The effects of this substitution are quantitively captured by the column-
wise differences between the coefficients in columns 1-2 and 3-4 (i.e., column 1 - column 3, column 
2 - column 4). Revised air pollution outcomes yield remarkable changes in the estimated effects of 
the SCAP and CAT policies. In contrast to GH, the significance of the CAT policy’s effects on PM2.5 
and SO2 five years after its implementation vanish. Not only that, but also the magnitude of the 
estimated effects is substantially smaller. For PM2.5, another notable change in the CAT policy’s 
effects includes the significance of the positive coefficients on a policy dummy in panel C.23 For SO2, 

                                                
23   One possible reason for the positive sign of the coefficients is that the binary variable that captures the effects of the CAT policy 

enactment might fail to account for some of the policy’s features. Specifically, for the fact that the impact of the CAT policy 
evolves in line with the higher proportion of newer vehicles subject to the mandatory installation of catalytic converters (Greenstone 
et al., 2017). Negative coefficient on the policy’s effects five years after its implementation seems to support this hypothesis. 
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the revised air pollution data indicate a higher magnitude of the policy dummy coefficient, which 
remains negative but, in contrast to GH, turns statistically significant in the one-step specification. 
The coefficient in column 4, panel D, suggests that SO2 concentrations decrease by 0.88  or 
13.8% of the 1987–1990 nationwide mean concentrations. Another change is that the coefficients on 
the break in SO2 trend turn positive, small, and statistically insignificant. The effects of the SCAP 
policies on PM2.5 are also substantially different from those found in GH. In contrast to GH, the 
effects of the SCAP policies five years after implementation enter positively, large, and significantly. 
Thus, the SCAP policies do not appear to have helped reduce PM2.5 concentrations but are rather 
associated with their increase.24 The policy dummy coefficients in panel A turn negative but remain 
statistically insignificant. Column 4, panel A, based on estimating the one-step version of equation 
(2), shows a positive and statistically significant break in PM2.5 trend. The general pattern of the 
SCAP policies’ effects on SO2 is similar to those in GH. However, their magnitudes are much smaller 
than those estimated using GH’s data.   

Finally, columns 5-6 take full advantage of MERRA-2 air pollution data and report coefficients 
estimated from fitting GH’s specifications to the revised air pollution outcomes and the extended 
number of observations. The column-wise differences between the estimates in columns 3-4 and 5-6 
capture the effects of the full sample (i.e., column 3 - column 5, column 4 - column 6). Of all the 
changes attributable to the extended number of observations, the most prominent change occurs with 
the impact of the CAT policy on SO2. Alongside the negative and statistically significant coefficient 
on the policy dummy already observed in column 4, panel D, the results from the one-step 
specification in column 6, panel D, show that the policy is associated with a statistically significant 
decline in SO2 concentrations five years after its implementation. Although substantially larger than 
in columns 3-4, -0.75  against -0.28 , the effect remains considerably smaller than that 
obtained by GH, 20% against 69% of the 1987–1990 nationwide mean concentrations. The effects of 
the SCAP policies on SO2, panel B, also change considerably compared to those in columns 3-4. The 
coefficients on the break in SO2 trend enter with the opposite sign, while the policies’ effects five 
years after implementation become almost indistinguishable from zero and change the sign in the 
one-step specification. The SCAP and CAT policies’ effects on PM2.5 change moderately compared 
to those in columns 3-4. The general pattern of these impacts in terms of the sign and significance of 
the coefficients does not change, but their magnitudes do. Notably, the size of the column-wise 
coefficients based on the numerically identical equation (2) and its one-step version in columns 5 and 
6 becomes more similar compared to the size of the coefficients in other columns, perhaps due to the 
increase in the sample size and less noise in MERRA-2 data. These reasons are also behind the 
decrease in standard errors. 

                                                
24   It may well be that the coefficients on the SCAP policies’ effects five years after implementation capture some other changes.  

Some blame lies with the energy generation by power plants, on which GH focus to a lesser degree than on vehicular pollution. 
Energy generation is the major contributor to air pollution in many developing countries and is certainly the driving force behind 
the rapid economic growth in China and India. At the city level, Goyal (2002) refers to the fossil fuel burning power plants in Delhi 
as the primary source of SO2 and SPM air pollution, with the respective shares of 56.8% and 60.4%. For comparison, vehicular 
emissions contribute a modest 4.8% and 6.7% to SO2 and SPM air pollution in Delhi. Thus, any increase in the power plant 
emissions increases levels of particulate air pollution. This can happen directly through the SPM channel and indirectly because of 
the conversion of SO2 to sulfate particulates (SO4), a PM2.5 component.  
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Table 3 – Effectiveness of air quality policies: Effects of MERRA-2 air pollution data 

 
 

Notes: The table tests the sensitivity of GH’s findings to the revised air pollution outcomes and the extended number of observations. 
It reports estimates from fitting the second-step equation (2), odd columns, and its one-step version, even columns, for the effects of 
SCAP and CAT policies on PM2.5 (panels A and C) and SO2 (panels B and D) levels. Columns 1-2 use GH’s original data to replicate 
their results. I substitute GH’s SPM by GH’s PM2.5 converted from GH’s SPM using SPM-PM10-PM2.5 ratios for comparability with 
the policies’ effects on MERRA-2 PM2.5. Columns 3-4 exploit the same sample of cities as in GH and revised PM2.5 and SO2 air 
pollution outcomes to reexamine GH findings. Columns 5-6 reexamine GH results by taking full advantage of the revised outcome 
variables and fitting equation (2) and its one-step version to all available city-by-year observations. Standard errors are reported in 
parentheses. Liner combination of the coefficients  is an estimate of the policies’ effect 5 years after implementation. p-value 
of a hypothesis test for the significance of this linear combination is reported below the estimates in square brackets. 
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5   THE EFFECTS OF METEOROLOGICAL CONTROLS 

A. Air pollution 

This subsection explores the effects of meteorological conditions on the robustness of GH’s findings 
by estimating a two-step approach and its one-step version with air temperature, precipitation, and 
wind speed as control variables.25 Table 4 summarizes the regression results. For brevity, it reports 
only estimates from the regressions that are based on the most complete data-sample combination, 
the same as in columns 5-6 of Table 3, and control for a complete set of the meteorological variables. 
Paralleling analysis in section 4, appendix Table 2 shows the results for other data-sample 
combinations from Table 3. Appendix Tables 3-5 document a detailed, data-sample combination-
specific breakdown of the changes in the estimates after the sequential inclusion of air temperature, 
precipitation, and wind speed. 

Columns in Table 4 report results from the regressions that incorporate all changes in the data, 
particularly revised air pollution outcomes, extended number of observations, and a full set of the 
meteorological controls. Altogether, these changes yield the most striking result of reexamination. 
Negative coefficients on the CAT policy’s effects on PM2.5 five years after implementation turn 
statistically significant (panel C). However, the magnitudes of the effects are smaller compared to the 
policy’s five-year effects on GH’s PM2.5 and correspond to a decline of 2.28  to 2.53  
against 10.7 , or 11% against 19% of the 1987–1990 nationwide mean concentrations. Further, 
the pattern of the estimates in column 6 of panel C, based on estimating the one-step version of 
equation (2), is the most similar to that in GH.  

Do meteorological controls matter? The column-wise differences between the estimates in columns 
5-6 in Tables 3 and 4 (i.e., column 5 in Table 3 - column 5 in Table 4) isolate the impacts of the 
meteorological confounders on the policies’ effects net of the impacts of the extended number of 
observations (i.e., column 3 - column 5 in Table 3).26 Substantially larger impacts of the 
meteorological confounders compared to the impacts of the extended number of observations indicate 
that the changes in the CAT policy’s effects on PM2.5 are driven by controlling for meteorological 
conditions. Wind speed makes a major contribution to improvements in air quality, while the size and 
significance of the policy’s effects are mostly unchanged after controlling for air temperature and 
precipitation (appendix Table 5, panel C). 

Likewise, meteorological conditions are important factors behind the changes in the SCAP policies’ 
effects on SO2. Panel B of Table 4 indicates that meteorological controls alter the magnitude and 

                                                
25    I control for a set of meteorological covariates by including  into Equation (1) of a two-step econometric approach.  
26    I illustrate this point on the example of the effects of the CAT policy on PM2.5 estimated using a two-step approach. The difference 

between the coefficients on policy dummy that captures the combined effect of the sample extension and inclusion of the 
meteorological controls is equal to 0.68  (2.26 - 1.58 or column 3 in Table 3 - column 5 in Table 4, panel C). The difference 
that captures the effect of the sample extension alone is equal to 0.11  (2.26 - 2.15 or column 3 - column 5 in Table 3, panel 
C). Then, the effect of the inclusion of the meteorological controls is equal to 0.57  (0.68 - 0.11). This is exactly the 
difference between the policy dummy coefficients that captures the effect of meteorological covariates described above, i.e., 
column 5 in Table 3 - column 5 in Table 4, panel C, or 2.15 - 1.58 = 0.57 .  
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significance of the policies’ impacts. The policy dummy coefficient from estimating the two-step 
approach doubled compared to that in Table 3 to statistically significant -0.71  (19% of the 
1987–1990 nationwide mean concentrations), while the five-year policies’ effects increase from           
-0.01  and 0.04  to -0.32  and -0.36  (10% of the 1987–1990 nationwide 
mean concentrations) and remain insignificant. Although substantially different from those in 
columns 5-6 of Table 3, these effects are similar to those reported in columns 3-4 of appendix Table 
2. Panel B of appendix Table 5 indicates that wind speed plays a major role in magnifying the effects 
of SCAP policies on SO2 and improving air quality.  

Table 4 – Effectiveness of air quality policies: Effects of meteorological controls 

 
Notes: The table tests the sensitivity of GH’s findings to additional controlling for meteorological confounders. It reports regression 
results from estimating the second-step equation (2) of a two-step econometric approach, odd columns, and its one-step version, even 
columns, for the effects of SCAP and CAT policies on PM2.5 (panels A and C) and SO2 (panels B and D) concentrations. Both 
specifications include a full set of meteorological controls, specifically air temperature, precipitation, its quadratic, and wind speed. 
The table reports only estimates from the regressions that are based on the most complete data-sample combination, the same as in 
columns 5-6 of Table 3. Specifically, the columns use new air pollution outcome variables and fit equation (2) and its one-step version 
to full sample of cities. Standard errors are in parentheses. Liner combination of the coefficients  is an estimate of the policies’ 
effect five years after implementation. p-value of a hypothesis test for the significance of this linear combination is reported below the 
estimates in square brackets. 
 

For the remaining policy-pollutant pairs, the impact of the meteorological controls is weaker. 
Although the magnitude of the CAT policy’s effects on SO2 increases (panel D), the general pattern 
of the estimates is comparable to those in columns 5-6 of Table 3. In this case, the effect of the 
inclusion of meteorological covariates is equivalent to the effect of the extended number of 
observations. However, the significance of the CAT policy’s impact five years after implementation 
is attributed to the increase in the sample size as the policy’s impact first becomes significant in Table 
3. Appendix Table 5, panel D, documents that all three meteorological covariates are beneficial for 
the effects of the CAT policy on SO2. Air temperature and precipitation alter mainly the magnitude 
of the policy’ effects five years after implementation, while wind speed also changes the coefficients 
on the policy dummy. In the case of the SCAP policies’ effects on PM2.5 (panel A), the effects of the 
inclusion of meteorological controls substantially reduces the positive and significant effects of the 
SCAP policies on PM2.5 five years after implementation. Appendix Table 5, panel A, suggests that 
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all meteorological conditions are beneficial for the five-year policies’ effects. In contrast, 
meteorological controls change the coefficients on policy dummy minimally. Air temperature and 
precipitation are harmful to the policies’ effects, while wind speed is beneficial. However, 
meteorological controls do not change the significance of the policy dummy coefficients, which 
remain statistically insignificant.  

B. Infant mortality 

This subsection reexamines the effects of the CAT policy on infant mortality. Following GH, I apply 
a two-step econometric approach with infant mortality rate as the outcome variable. As air pollution 
concentrations do not enter this equation directly, I test the sensitivity of GH’s findings solely to the 
inclusion of the meteorological controls. Table 5 reports the resulting estimates. 

Table 5 – Effectiveness of air quality policies: Infant mortality 

Notes: The table reports regression results from estimating the second-step equation (2) of a two-step econometric approach that tests 
for the effects of the CAT policy on infant mortality rate. Column 1 uses GH’s original data to replicate their results. Columns 2-4 
reexamine GH’s findings by reporting a detailed breakdown of the changes in the estimates after the sequential inclusion of air 
temperature, precipitation and its quadratic, and wind speed. Standard errors are reported in parentheses. Liner combination of the 
coefficients  is an estimate of the policy’s effect five years after implementation. p-value of a hypothesis test for the 
significance of this linear combination is reported below the estimates in square brackets. 

 
 
I begin by successfully reproducing GH estimates of the CAT policy’s effects on infant mortality rate 
using GH’s original data. Column 1 of Table 5 indicates that the policy is associated with a modest 
and statistically insignificant decline in the infant mortality rate of 0.64 per 1000 live births five years 
after implementation. This result corresponds to that reported by GH in column 3 of Table 6. 
However, the policy dummy coefficient is positive and statistically significant at the 5 percent level. 
GH do not report the significance of this coefficient. The estimates in the column also indicate a 
negative and statistically significant break in infant mortality trend. 

In the second column, I report estimates after controlling for air temperature. The general pattern of 
the results is little changed. However, the evidence of a negative and insignificant policy’s effect five 
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years after implementation is substantially weaker using this specification, with a reduction in the 
infant mortality rate of 0.36 per 1,000 live births. In the third column, I additionally control for 
precipitation and its quadratic. Inclusion of these meteorological variables reduces the estimated 
impact of the CAT policy on infant mortality further to -0.29 per 1,000 live births, which is about a 
third of the size of GH’s original estimate. Other results are largely unchanged, including a positive 
and statistically significant policy dummy coefficient and negative and significant trend break.  

Finally, in the last column of Table 5, I add wind speed as a control variable. In contrast to the results 
in previous columns, the estimated effect of the policy five years after implementation turns positive 
but remains insignificant. CAT policy is associated with a statistically insignificant increase in the 
infant mortality rate of 0.59 per 1,000 live births five years after implementation. Controlling for 
wind speed reduces the size of the trend break coefficient and eliminates its significance. However, 
the sign and significance of the policy dummy coefficient are robust to the inclusion of meteorological 
controls, although its magnitude increases compared to those reported in previous columns. 

6   DISCUSSION 

How should the evidence in Sections 4 and 5 be interpreted in terms of the policies’ effectiveness? 

The analysis in Section 4 indicates that GH’s findings are highly sensitive to the revised air pollution 
outcomes and the extended number of observations. The changes in the patterns of the policies’ 
effects include changes in the size, significance, sign of the estimates, and reinforce the conclusion 
made in Section 3 based on the observation of the opposite trends in air pollution outcomes.  

GH’s findings do not generally hold after replacing original air pollution outcomes by those 
constructed using satellite-derived data. Environmental regulations found in GH to be strongly 
associated with air quality improvements do not appear to have helped reduce air pollution. The only 
exception pertains to the CAT policy’s effect on SO2. The statistically significant policy dummy 
coefficient from the one-step specification suggests a modest reduction in SO2 pollution. The policy’s 
effects five years after implementation, however, remain insignificant. Thus, adding revised data casts 
doubts on the effectiveness of air pollution control policies.  

Nevertheless, GH’s findings seem somewhat less fragile after extending the sample size to the full 
number of observations from the satellite-derived data. Alongside the coefficient on the policy 
dummy, the estimate from the one-step specification indicates that the CAT policy is associated with 
a statistically significant decline in SO2 concentrations five years after implementation. However, the 
effect remains substantially smaller than that obtained by GH. There is still little empirical support 
for the effectiveness of air pollution control policies for other policy-pollutant pairs.  

Estimates from the richest specifications in Section 5 that additionally incorporate a complete set of 
meteorological controls point to further convergence in the policies’ effects estimated using GH’s 
and satellite-based data. Similarly to GH, the CAT policy induces reductions in PM2.5 and SO2 
concentrations five years after implementation. Although weaker than those found using GH’s data, 
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the CAT policy’s effects five years after implementation estimated using satellite-based data point to 
a decline of 11% against 19% of the 1987–1990 nationwide mean concentrations for PM2.5 and 25% 
against 69% for SO2. The fact that this study finds a similar pattern of the CAT policy’s effects using 
alternative data is particularly remarkable given substantive differences between data sources and 
differential trends in air pollution. Likewise, the estimated impact of the CAT policy on infant 
mortality confirms GH’s finding that regulation-induced improvements in air quality need not 
improve infants’ health.  

A natural question that arises from these findings is whether GH’s and satellite-based data lead to the 
same results. Analysis of the disparities in the outcomes generated by two data sources provides a 
reasonable basis for answering this question. At least two of them deserve attention. 

First, the qualitative patterns of the policies’ effects estimated using GH’s and satellite-based data 
differ considerably. For the CAT policy’s effects on SO2, GH’s data indicate insignificant coefficients 
on policy dummy and negative and significant breaks in SO2 trend, whereas satellite-based data point 
to the opposite effects. Estimates suggest that GH might overlook the effectiveness of the SCAP 
policies. The policy dummy coefficient turns statistically significant after estimating the two-step 
approach using satellite-based data, indicating a reduction in SO2 pollution by 19% of the 1987–1990 
nationwide mean concentrations. For the CAT policy’s effects on infant mortality, the estimates point 
to the opposite conclusion from that reached by GH. The policy is associated with a modest and 
insignificant increase in infant mortality five years after implementation. 

Second, the policies’ effects estimated using satellite-based data are not always robust across various 
data-sample combinations and across two-step and one-step specifications that are supposed to return 
numerically identical estimates. For the CAT policy’s effects on PM2.5, the coefficients that quantify 
the policy’s effects five years after implementation turn significant only in the richest combination 
but across both GH’s specifications. In contrast, for the CAT and SCAP policies’ effects on SO2, the 
coefficients on policy dummy and five-year effect become significant in several data-sample 
combinations but only in one of the GH’s specifications. For example, the CAT policy’s effect on 
SO2 five years after implementation turns significant in the one-step specification, whereas the 
estimate from the two-step specification remains insignificant. Not only does the significance of the 
estimates vary dramatically but also their sign and size. The CAT policy’s effects on infant mortality 
are similarly sensitive to the inclusion of additional controls. After controlling for wind speed, the 
five-year effect reverses the sign from all previous specifications using GH’s and satellite-derived 
data.  

Observed disparities do not provide strong empirical support for a complete similarity in the results 
based on the findings from two data sources. Therefore, reexamination using satellite-based data can 
confirm the conclusions drawn from GH’s data, but with reservations. Equally, it seems unreasonable 
to interpret the results from satellite-derived data as sufficiently compelling.  
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7   CONCLUSION 

This paper reexamines empirical evidence on the effectiveness of environmental regulations in India 
from a recent study by Greenstone and Hanna (2014). GH demonstrate that air pollution control 
policies have been effective in improving air quality but arrive at the surprising conclusion that the 
policy-led reductions in air pollution need not improve infants’ health. These somewhat 
counterintuitive findings are likely due to the limited availability of air pollution data and the absence 
of critical meteorological confounders. This conclusion motivated a reexamination of GH’s findings 
using alternative data sources. 

Using satellite-based estimates for air quality and meteorological conditions, I test the sensitivity of 
GH’s findings to revised air pollution outcomes, an extended number of observations, and 
meteorological controls. Three findings emerge. First, air pollution outcomes constructed using GH’s 
and satellite-based data demonstrate opposite trends. While concentrations of air pollutants were 
falling in GH, concentrations of the revised air pollution outcomes are continuously increasing. 
Second, GH’s findings are highly sensitive to the revised air pollution outcomes and the extended 
number of observations. There is little empirical support in satellite-derived data for the effectiveness 
of the air pollution control policy found in GH to be strongly associated with air quality 
improvements. Third, meteorological controls matter. Additionally controlling for meteorological 
confounders revealed similar effects of policies on air pollution to those reported in GH. Likewise, 
the estimated impact on infant mortality confirms that regulation-induced improvements in air quality 
do not necessarily result in improved health. However, the qualitative patterns estimated using GH’s 
and satellite-derived data differ substantially. Further, the effects of policies estimated using satellite-
derived data are not robust across various data-sample combinations and specifications. Thus, based 
on the complementary empirical evidence from satellite-derived data, it seems reasonable to confirm 
GH’s findings and interpret air pollution control policies in India as effective, although with 
substantially weaker effects on air pollution. 

The next important empirical step in this line of research will be to explore further the prospects for 
using satellite-based data in a meaningful examination of important issues related to the effectiveness 
of environmental regulations. Such research would be particularly valuable for developing countries 
where air pollution control policies are especially contentious, and their effectiveness is hampered by 
weak institutions and limited data availability. Understanding whether and to what extent satellite-
based estimates can be reliable complements to the observed indicators will be critical in uncovering 
the effects of environmental regulations and recommending sensible interventions aimed at 
mitigating air pollution and protecting population health. 
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APPENDIX 

Appendix Figure 1: Vital Statistics of India 1995, example page with city names 
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Appendix Figure 2: ML InfoMap digital maps with village and town borders as of 2011 
 

Panel A: All India, 619000 polygons 
 

 
 

Panel B: State of Madhya Pradesh  
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Appendix Figure 3: Example of city extent polygon selection 
 
 

Panel A: District Census Handbook, Dewas city, 
Dewas district, Madhya Pradesh state 

Panel B: Dewas city, selected urban extent 
polygon, ML InfoMap 2011 digital maps 

 

 

 

 
 
 
 
 

Appendix Figure 4: Example of digitized city extent polygon  
 
 

Panel A: District Census Handbook, Baddi 
city, Solan district, Himachal Pradesh state 

 

Panel B: Baddi city, selected urban extent 
polygon, digitized from the District Census 

Handbook 
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Appendix Figure 5: Selected city extent polygons 
 

Panel A: All selected cities, 140 polygons 
 

 
Panel B: Selected cities, a closer look 
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Appendix Figure 6: Comparison of the cities’ administrative boundaries  
with GRUMP urban extent polygons 

 
 
 

 
 
 

Notes: The figure compares urban extent polygons defined by the cities’ administrative boundaries in this study with those 
defined by the combination of the night-time lights and buffered settlement centroids in the Global Rural-Urban Mapping 
Project (GRUMP). More information about the GRUMP can be found at https://sedac.ciesin.columbia.edu/data/collection/ 
grump-v1/about-us. 
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Appendix Figure 7: Comparison of kernel density graphs of air quality 

 
 

Panel A: Particulate air pollution: GH (left) vs. This study (right) 
 

 
 
 
 

Panel B: SO2 air pollution: GH (left) vs. This study (right) 
 

 
Notes: The figure provides additional evidence on the opposite trends. It compares kernel density estimates of GH’s and 
revised air pollutant distributions across Indian cities for two periods, 1987-1990 and 2004-2007. 
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Appendix Figure 8: Trends in PM2.5 components, 1987-2007 

 

 
Notes: The figure shows the trends in the components of PM2.5 that shed some light on the developments in the overall 
PM2.5 air pollution. 

 
 
 
 
 
 
 
 
 
 
 

 

Panel A: PM2.5 components 1 
 
 

 
 

 
Panel B:  PM2.5 components 2 
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Appendix Table 1 – GH replication: Comparison of outcome variables 

 
 

Notes: The table replicates GH’s results exactly using their data. It reports estimated coefficients from 
fitting the second-step equation (2), odd columns, and its one-step version, even columns, for the effects 
of SCAP (Panel A) and CC (Panel B) policies on particulate air pollution. The outcome variable in 
columns 1-2 is the original GH’s SMP, while the outcome variable in columns 3-4 is PM2.5 converted 
from GH’s SPM using SPM/PM10/PM2.5 ratios: PM10 = 0.5053SPM, PM2.5=0.438PM10. PM10 is 
particulate matter with a diameter less than 10 μm. Both PM10 and PM2.5 are the fractions of SPM. 
Columns 1-2 correspond to panels A, columns 1-2 and 7-8 of Table 3 in the main text. Standard errors 
are in parentheses. The liner combination of the coefficients  is an estimate of the policies’ 
effects 5 years after implementation. p-value of a hypothesis test for the significance of this linear 
combination is reported below the estimates in square brackets. 
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Appendix Table 2 – Effectiveness of air quality policies: Effects of meteorological controls 

 
Notes: The table tests the sensitivity of GH’s findings to additional controlling for meteorological confounders. The table reports 
regression results from estimating the second-step equation (2) of a two-step econometric approach, odd columns, and its one-step 
version, even columns, for the effects of SCAP and CAT policies on PM2.5 (panels A and C) and SO2 (panels B and D) concentrations. 
Both specifications include a full set of meteorological controls, specifically air temperature, precipitation, its quadratic, and wind 
speed. The enumeration of columns corresponds to that of columns in Table 3. Columns 1-2 use GH’s data. I substitute GH’s SPM by 
GH’s PM2.5 for comparability with the policies’ effects on MERRA-2 PM2.5. GH’s PM2.5 is converted from GH’s SPM using SPM-
PM10-PM2.5 ratios. Columns 3-4 exploit the same number of cities as in GH and modified PM2.5 and SO2 air pollution outcomes. 
Columns 5-6 use new outcome variables and fit equation (2) and its one-step version to full sample of cities. Standard errors are in 
parentheses. Liner combination of the coefficients  is an estimate of the policies’ effects five years after implementation.         
p-value of a hypothesis test for the significance of this linear combination is reported below the estimates in square brackets. 
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Appendix Table 3 – Detailed effects of meteorological controls, GH data/GH sample 

 

Notes: The table further tests the sensitivity of GH’s findings to additional meteorological confounders. It uses original GH data like 
in Columns 1-2 of Table 3 to provide a detailed breakdown of the changes in the estimates after the sequential inclusion of air 
temperature, precipitation, and wind speed. The table reports regression results from estimating the second-step equation (2) of a two-
step econometric approach, odd columns, and its one-step version, even columns, for the effects of SCAP and CAT policies on PM2.5 
(panels A and C) and SO2 (panels B and D) concentrations. I substitute GH’s SPM by GH’s PM2.5 for comparability with the policies’ 
effects on MERRA-2 PM2.5. GH’s PM2.5 is converted from GH’s SPM using SPM-PM10-PM2.5 ratios. Standard errors are in 
parentheses. Liner combination of the coefficients  is an estimate of the policies’ effects five years after implementation.        
p-value of a hypothesis test for the significance of this linear combination is reported below the estimates in square brackets. 
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Appendix Table 4 – Detailed effects of meteorological controls, New data/GH sample

 
Notes: The table further tests the sensitivity of GH’s findings to additional meteorological confounders. It exploits the same number of 
cities as in GH and MERRA-2 PM2.5 and SO2 air pollution outcomes, like in Columns 3-4 of Table 3, to provide a detailed breakdown 
of the changes in the estimates after the sequential inclusion of air temperature, precipitation, and wind speed. The table reports 
regression results from estimating the second-step equation (2) of a two-step econometric approach, odd columns, and its one-step 
version, even columns, for the effects of SCAP and CAT policies on PM2.5 (panels A and C) and SO2 (panels B and D) concentrations. 
Standard errors are in parentheses. Liner combination of the coefficients  is an estimate of the policies’ effects five years after 
implementation. p-value of a hypothesis test for the significance of this linear combination is reported below the estimates in square 
brackets. 
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Appendix Table 5 – Detailed effects of meteorological controls, New data/Full sample 

 

Notes: The table further tests the sensitivity of GH’s findings to additional meteorological confounders. It uses the full sample of cities 
and MERRA-2 PM2.5 and SO2 air pollution outcomes, like in Columns 5-6 of Table 3, to provide a detailed breakdown of the changes 
in the estimates after the sequential inclusion of air temperature, precipitation, and wind speed. The table reports regression results 
from estimating the second-step equation (2) of a two-step econometric approach, odd columns, and its one-step version, even columns, 
for the effects of SCAP and CAT policies on PM2.5 (panels A and C) and SO2 (panels B and D) concentrations. Standard errors are in 
parentheses. Liner combination of the coefficients  is an estimate of the policies’ effects five years after implementation.         
p-value of a hypothesis test for the significance of this linear combination is reported below the estimates in square brackets. 



Abstrakt 
 
 
Tento článek zkoumá empirické výsledky o efektivnosti enviromentální regulace v Indii uvedené 
v nedávné studii Greenstona a Hanna (2014). Greenstone a Hann zjišťují, že politika pro kontrolu 
znečištění ovzduší v Indii byla efektivní ve zlepšení kvality ovzduší, ale měla jen mírný a 
statisticky nevýznamný efekt na kojeneckou úmrtnost. Tyto do určité míry neintuitivní výsledky 
pravděpodobně pramení z omezené dostupnosti pozemních dat o znečištění ovzduší použitých ve 
studii a ignorování důležitých meteorologických faktorů. Využívám nedávného pokroku v satelitní 
technice a metodologie Greenstona a Hanna k testování citlivosti jejich výsledků na revidované 
míry znečištění, vyšší počet pozorování a meteorologické kontrolní proměnné. Navzdory 
zásadním rozdílům mezi těmito dvěma datovými soubory shodně potvrzuji závěry Greenstona a 
Hanna. Nicméně, efekt enviromentální politiky je významně slabší. Tento článek vyzdvihuje 
význam dalšího výzkumu efektivity enviromentální regulace v rozvojových zemích a využití 
satelitních snímků ve zkoumání důležitých enviromentálních otázek.  
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