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Abstract

This thesis studies financial markets and the information we can obtain from observing
the actions of financial market participants.

In the first chapter, I study how the combination of different accounting ratios, which
are considered to be financial signals of future performance, can affect the analysts’
and managers’ earnings forecast releases. The findings show that analysts treat the
firms differently depending on whether the firms have only strong financial indicators
(high signal group), weak financial indicators (low signal group), and those with both
positive and negative signals (mixed signal group). The study also provides evidence that
the managers may realize the heterogeneity in analysts’ treatment, and as a result the
managers’ earnings forecasts will be affected both by the signal group type of the firm and
the analysts’ bias characteristic for the appropriate signal group. At the same time, the
findings show that the analysts sometimes fail to disregard the managers’ forecast biases
and are misled by the managers. This provides evidence of inaccuracy on the part of
analysts and potential gaming on information disclosure between analysts and managers.

In the second chapter, I examine whether trading activity responds to the industry-
related earnings announcement and whether this activity is informative. I find that the
subsequent announcer’s abnormal trading volume is informative about their stock perfor-
mance upon the first and own subsequent announcement and in the post announcement
period. While the first announcer’s earnings surprise is expected to be informative about
that of the subsequent announcer, I also show that not only the first announcer’s earnings
surprise in the current quarter but the history of both first and subsequent announcers
can predict the latter’s earnings surprise. I also check whether the informativeness of the
subsequent announcer’s abnormal trading volume is not solely explained by the market
agents’ ability to incorporate the predictability of their earnings surprises. The results
suggest that although the subsequent announcer’s trading activity is driven by updating
of beliefs made upon the first announcement, the market fails to fully incorporate the
earnings surprise predictability, which provides some evidence of market inefficiency.

In the third chapter (with Yuko Hashimoto), we study whether the EU member
countries act as a single investor due to the stronger financial integration over recent years.
Although we find evidence that the portfolio investments of the EU countries tend to
move together, there is still some diversity among the Union members. In our analysis,
we distinguish two types of countries: those who prefer to invest more evenly among
counterparties (low concentration type) versus those who invest more heavily in some
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counterparties (high concentration type). Consistent with our hypothesis, we find that the
level of investment concentration and investment share at the destination play a role in the
way the countries will respond to the changes in the macrovariables. We also find evidence
of the crisis period affecting both the co-movements of EU members’ investment shares
at destination and the macrovariables driving international portfolio investments. In
particular, variables of the health of the financial system become important determinants
for portfolio investment during the crisis.

viii



Abstrakt

Tato dizertační práce studuje finanční trhy a informace, které můžeme získat pozorováním
činnosti účastníků finančních trhů.

V první kapitole studuji jak kombinace různých účetních ukazatelů, které jsou považo-
vané za finanční signály budoucích výsledků, mohou ovlivnit vydávání prognóz příjmů
analytiky a manažery. Výsledky prokazují, že analytici hodnotí firmy odlišně v závislosti
na tom, jestli firmy mají pouze silné finanční indikátory (pozitivní signální skupina), slabé
finanční indikátory (negativní signální skupina) nebo s pozitivními i negativními signály
(smíšená signální skupina). Studie také poskytuje důkazy o tom, že manažeři si mohou
uvědomovat různorodost hodnocení analytiky a v důsledku jsou prognózy příjmů manažerů
ovlivněny jak signální skupinou firmy, tak i zkreslením analytiků charakteristicým pro
danou signlní skupinu. Výsledky zároveň ukazují, že analytici někdy nezapracují zkreslení v
prognóze manažerů a jsou manažery uvedeni v omyl. Toto poskytuje důkaz o nepřesnostech
analytiků a potenciálním manipulování se zveřejňování m informací manažery.

Ve druhe kapitole zkoumám zda aktivita obchodování reaguje na zveřejnění výsledků
ve stejném odvětví, a zda tato aktivita obchodování je informativní. Zjišťuji, že abnormální
aktivita obchodování u následného oznamovatele je informativní o výnosnosti akcií tohoto
oznamovatele při prvním oznámení v odvětví, při vlastním oznámení a o výnosnosti akcií
po oznámení. Zatímco se očekává, že překvapení ohledně výsledků prvního oznamovatele
bude informativní o překvapení ohledně výsledků následujícího oznamovatele, ukazuji, že
nejen překvapení v současném čtvrtletí, ale i historie překvapení prvního i následujícího
oznamovatele může předpovědět překvapení ohledně výsledků následujícího oznamovatele.
Dále kontroluji, zda informativnost abnormálního obchodování následujícího oznamovatele
není vysvětlena výlučně schopností účastníků trhu zohlednit předvídatelnost překvapení
ohledně výsledků následujícího oznamovatele. Výsledky ukazují, že zatím co aktivita
obchodování následujícího oznamovatele je způsobena aktualizováním přesvědčení během
prvního oznámení, trh nezohledňuje plně předpověditelnost překvapení ohledně výsledků.

Ve třetí kapitole (společně s Yuko Hashimoto) studujeme zda členské země EU jednají
jako jediný investor kvůli větší finanční integraci během nedávných let. Přestože nalézáme
důkazy o tom, že portfoliové investice zemí EU mají tendenci se pohybovat společně,
existuje stále určitý stupeň různorodosti mezi členy unie. V naší analýze rozlišujeme dva
typy zemí: země preferující investovat rovnoměrně mezi protistrany (typ nízké koncentrace)
a země, které investují více u některých protistran (typ vysoké koncentrace). Konzistentně
s naší hypotézou zjišťujeme, že úroveň koncentrace investic a podílu investic v místě určení
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hrají roli v tom, jak země reagují na změny v makroekonomických proměnných. Také
zjišťujeme, že období krize ovlivnilo společný vývoj podílu investic členských států EU a
makroekonomické proměnné, které ovlivňují mezinárodní portfoliové investice. Konkrétně
proměnná ohledně zdraví finančního systému se stala důležitým určovatelem portfoliových
investic během krize.
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Preface

This thesis studies financial markets and the information we can obtain from observing the

actions of their participants. The first paper investigates financial analysts’ and managers’

forecasting accuracy and how this may be affected by potential gaming between them. The

second paper studies the informativeness of the trading volume upon intraindustry earnings

announcements and whether the market participants fully incorporate this informativeness.

The goal of the third chapter (co-authored with Yuko Hashimoto) is to investigate whether

the EU countries act as a single investor as a result of the increasing financial integration.

The focus of my first chapter is the accuracy of the financial analysts. The accuracy

of financial analysts’ forecasts is a particularly important topic in research, since it can

signal the value of the services provided by the analysts. Among the documented drivers

of the financial analysts’ forecast inaccuracy are key financial indicators (Abarbanell &

Bernard, 1992), market expectations (Bergman & Roychowdhury, 2008; Mikhail, Walther,

& Willis, 2009), and attention distraction (Hirshleifer, Lim, & Teoh, 2009). Motivated

by the existing research on the extensive use by financial analysts of the key accounting

ratios (Drake, Rees, & Swanson, 2011; Frankel & Lee, 1998; Jegadeesh, Kim, Krische, &

Lee, 2004) in creating the earnings forecast, I contribute to the literature on the analysts’

accuracy by incorporating a financial signaling approach. By financial signaling, I mean

that there might be three types of firms: those with only strong financial indicators (high

signal group), weak financial indicators (low signal group), and with both strong and

weak financial indicators (mixed signal group). On the one hand, it might be much easier

for the analysts to produce forecasts for high and low signal groups since every financial
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indicator points in one direction. On the other hand, solely strong or weak financial

indicators may push the analysts to produce too optimistic or too pessimistic forecasts. It

might be even more ambiguous for the mixed signal group since some financial indicators

may point to good future performance while the others indicate poor future performance,

which can complicate the forecasting further. Overall, the findings of this chapter show

that analysts treat the firms with low, high and mixed signals differently. Moreover, there

is evidence that the managers of the firms realize this and try to adjust their own forecasts

in order to correct or, maybe, to exploit the analysts’ biases. The findings also show that

the analysts sometimes fail to adjust for managers’ strategic forecasts and can be misled

by them.

In the second paper, I discuss such important topics in finance as the informative-

ness of the trading volume and intra-industry information transfers. Trading volume

informativeness has received considerable attention (Campbell, Grossman, & Wang, 1992;

Connolly & Stivers, 2003; Conrad, Hameed, & Niden, 1994; Gallant, Rossi, & Tauchen,

1992; Lee & Swaminathan, 2000) since the actions and beliefs of the market participants

should be reflected in the trading volume. Moreover, it can serve as an extra or purifying

information signal (Schneider, 2009) for other information signals. A particularly valuable

form of information arrivals for the market agents is the industry related news (Firth, 1976;

Foster, 1981; Baginski, 1987; Han, Wild, & Ramesh, 1989; Han & Wild, 1990; Freeman &

Tse, 1992; Thomas & Zhang, 2008; etc.). I combine these two streams of research and show

that the subsequent announcer’s trading volume upon the first earnings announcement in

the industry is informative. Upon this first announcement, the market agents receive a

new piece of information in the form of the earnings surprise of the first announcer. As a

result, they may adjust their expectations about the future performance of the subsequent

announcing firms, which will be reflected in the trading activity. However, the response

to the first announcer’s earnings surprise might depend on the earnings surprise history of

both the first and subsequent announcer, since a strong earnings surprise history might be

extrapolated into the future, while irregularity in positive earnings surprises in the past

may lead to the perception of the current quarter earnings surprise as a temporal favorable

outcome, which should not be extrapolated into the future. This chapter provides evidence

that the subsequent announcer’s trading activity and stock performance upon the first

announcement is driven not solely by the first announcer’s earnings surprise itself, but

rather by the history of both the first and subsequent announcer. I also find that the

future earnings surprises of subsequent announcing firms can be predicted by the first
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announcer’s earnings surprise as well as the earnings surprise history of both the first

and subsequent announcer. Moreover, I show that the market fails to realize fully the

subsequent announcer’s earnings surprise predictability, which can be interpreted as some

form of market inefficiency.

The third chapter discusses the international portfolio investments made by the EU

member countries. It is expected that due to higher financial integration the financial

markets of the EU members should converge into a single market. As a result, one should

consider the international portfolio investments stemming from the EU members in the

same manner as those originating from a single market, or a single country-investor.

Consistent with expectation, the findings show that the EU members’ shares of the total

portfolio investments into the destination countries co-move together to a high degree,

which suggests that they act as a single investor. At the same time, financial integration

is still not complete and there is high diversity among EU members. Due to this diversity,

it is expected that they may differ in the international investment strategies and motives

of international investments, which may consequently lead to heterogeneous responses to

the changing investment environment in the country-destinations. In particular, in this

study two investment types of EU countries are considered: low concentration type (those

who prefer to invest more evenly among the country-destinations) and high concentration

(those who prefer to invest more evenly among the country-destinations). The results also

show that low-concentration type countries respond in the opposite direction relative to the

high-concentration type countries: when the portfolio flows exhibit a negative reaction to

the changes in the macro variables for the high-concentration type, the low-concentration

type reaction to such variables is less negative or even positive; conversely, the positive

reaction of the high-concentration type is accompanied by a less positive reaction of the

low-concentration type.
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Foundation project No. P402/12/G097 DYME Dynamic Models in Economics. I am thankful for the
comments of Jan Hanousek, Jan Kmenta, and Olga Popova. All errors remaining in this text are the
responsibility of the author.
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Abstract

This chapter examines the extent to which financial signaling affects analysts’ and managers’

forecast releases. The findings give evidence of heterogeneity of analysts’ forecast errors

between firms with strong financial indicators (high signal group), weak financial indicators

(low signal group), and those with both strong and weak financial indicators (mixed signal

group). The paper further indicates that managers’ forecast releases also depend on the

type of the firm and that managers may try to use the heterogeneity in analysts’ treatment

while producing forecasts. The findings also suggest that the analysts sometimes fail to

adjust for managers’ forecast biases and for this reason they may be misled by managers’

forecasts. This provides evidence of inaccuracy on the part of analysts and potential

gaming on information disclosures between analysts and managers.
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1.1 Introduction

The reaction to new information releases in the financial markets has created intense

attention in the literature. The vast literature on this topic shows that investors do

not fully incorporate all available information at once (referred to in the literature as

overreaction or underreaction), which is evidenced by the existence of return drift2. The

empirical evidence of overreaction and underreaction to new information has motivated

researchers to reconsider assumptions of total rationality and homogeneity3.

The phenomenon of underreaction or overreaction can be explained by at least two

facts. The first is behavioral, and implies that people just cannot incorporate all relevant

information at once, but do this rather with a time lag, as in the model of Hong and

Stein (1999), where the agents incorporate only some subset of all the publicly available

information. This results in underreaction at first and subsequent overreaction. The

underreaction and overreaction can also result from representativeness and conservatism

in learning (Kahneman & Tversky, 1972; Barberis et al., 1998; Brav & Heaton, 2002; Alti

& Tetlock, 2014; Gennaioli et al., 2015). Under the earlier type of learning, an event

consistent with a recent trend (or conjunctive event) will be perceived as natural and

will prompt a reaction at once, while an unexpected (or disjunctive) event will be more

difficult to interpret. In the case of the later learning type, the new information will be

neglected, or its value will be underestimated. Moreover, optimism and pessimism of the

market agents may also lead to the deviation from rationality (Cecchetti, Lam, & Mark,

2000).

A second explanation for such a phenomenon could be the technical difficulties in

putting accurate weights on the information signals that market participants receive

simultaneously. As an example of technical difficulties in interpreting information signals,

we can consider a situation in which the returns are predictable by the set of variables.

2Previous research gives evidence of overreaction or underreaction to earnings announcements. Bernard
and Thomas (1989), for example, show that the return drift can be explained by the market agents
failing to fully realize the implication of recent earnings for future earnings. Chan (2003) distinguishes
between public news and private information and explains the existence of the return drift with the
market participants’ underreaction to the valid information and the documented reversal as the result
of investors’ overreaction to the shocks. The return drift can also result from changes in the dividends
policy as shown by Michaely, Thaler, and Womack (1995).

3Thus, for example, Daniel, Hirshleifer, and Subrahmanyam (1998) introduce overconfidence and biased
self-attribution to explain the investors behavior consistent with empirical evidence. Barberis, Shleifer,
and Vishny (1998) model investors’ overreaction and underreaction by introducing conservatism and rep-
resentativeness, built on the past stream of the information. According to Gennaioli, Shleifer, and Vishny
(2015) underreaction and overreaction to the information arises due to the investors’ representativeness
bias in their updating of beliefs.
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In this case, it may be difficult for market participants to extract information from

the several signals which predict different future performance paths of the same stock.

Another example of technical difficulties in optimally updating information can arise

from the time-varying relevance of the informational signals and inability to predict

this relevance. Depending on macroeconomic conditions, some signals may have more

predictive power compared to others, but under different macroeconomic conditions these

predictive indicators may have no predictive power at all (Rapach, Strauss, & Zhou, 2010).

Taking these findings together, I expect that either behavioral or technical difficulties

or both will have an impact on the financial analysts’ forecast accuracy. As has been

shown by previous research, financial analysts use accounting information extensively for

earnings forecasts (Abarbanell & Bernard, 1992; Frankel & Lee, 1998; Jegadeesh, Kim,

Krische, & Lee, 2004; and Drake, Rees, & Swanson, 2011). Since earnings can be predicted

by a set of key accounting ratios (Foster, 1977; Ou, 1990; Fairfield, Sweeney, & Yohn, 1996;

Nissim & Penman, 2001; and Dichev & Tang, 2009), they will all be important information

signals for the analysts. That is why, on the one hand, for firms which have only high

or low indicators, the analysts may be quite sure about future performance, since every

indicator will point in the same direction, and there might be no technical difficulties for

producing forecasts for this type of firms. On the other hand, due to representativeness the

set of only strong or only weak accounting indicators may respectively lead to optimism or

pessimism in the analysts’ earnings forecasts. The situation can be even more ambiguous

for firms which have both strong and weak financial indicators, since it will be hard for

analysts to sort the relevant accounting ratios from the irrelevant, but it might also be

possible that positive and negative signals from the strong and weak accounting indicators

may neutralize each other.

To study whether the financial analysts’ accuracy is influenced by the possible diffi-

culties in optimally incorporating all the publicly available information, I introduce the

accounting based financial signaling approach. By financial signaling I mean that there

might be three types of firms: those with strong financial indicators (high signal group),

weak financial indicators (low signal group), and those with both positive and negative

indicators (mixed signal group). It should be mentioned here that the managers of firms

may or may not try to drive market expectations by managing the financial indicators.

Regardless, these financial indicators may be perceived by the market agents as informative

signals of the future performance of the firms. For the purposes of distinguishing different

types of firms, following previous research findings (Foster, 1977; Ou, 1990; Fairfield et al.,
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1996; Nissim & Penman, 2001; and Dichev & Tang, 2009) I consider three main groups of

financial indicators: which indicate profitability, operating efficiency, and capital structure.

Previous research also shows that managers may try to drive the analysts’ forecasts.

Thus, for example, Bergman and Roychowdhury (2008) show that, depending on macroeco-

nomic conditions, managers may drive the analysts’ forecasts up or down. Ma and Chang

(2007) show that managers may disclose more actively in order to avoid the earnings

surprise volatility. This may also suggest that if the analysts treat firms with low, high

and mixed signals differently, we might expect that the managers would adjust their own

forecasts in order to correct or, maybe, exploit the analysts’ biases. For this reason, it

might be of interest to consider the managers’ forecast releases from the standpoint of

their response to the analysts’ perception, as well as the impact of managers’ forecasts on

the analysts.

However, the analysts are sophisticated market players, so they may, or may not, always

be misled by the managers. By examining the analysts’ earnings forecast revisions in

response to the managers’ forecast announcements, we may gain insights into whether and

how the analysts are influenced by the managers’ forecasts. If the managers really release

their forecasts strategically, the analysts may foresee such strategic behavior and revise

their forecasts, adjusting for the possible forecast biases of managers depending on the

types of the firms (i.e. low, high, and mixed signal groups). Evidence of the heterogeneity

of managers’ forecast behavior and the analysts’ forecast revisions in response, depending

on the type of the firms, could imply that there is a forecast disclosure game between

analysts and managers.

Overall, the findings of this paper show that the distributions of analysts’ forecast

errors differ across low, high, and mixed signal groups. Financial signals influence analysts’

forecasts and the impact of the combination of the signals is not equal across low, high and

mixed signal groups. There is also evidence of heterogeneity in managers’ forecast errors

depending on the signal group of the firm and analysts’ failure to adjust the earnings

forecast revisions for the managers’ biases.

In contrast to the previous literature, which shows usefulness of accounting statements

as the source of information (Foster, 1977; Ou, 1990Fairfield et al., 1996; Nissim & Penman,

2001; Piotroski, 2000; DeFond, 2002; Jegadeesh et al., 2004; Nguyen, 2005; Drake et al.,

2011; etc.), I show that information from financial statements may also create inefficiencies

on the part of analysts and managers trying to exploit such inefficiencies. The findings of

this paper may also motivate future research to identify the hierarchical structure of key
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financial ratios predicting future earnings of firms, which may improve financial statement

analysis and equity valuation practices.

The paper is organized as follows. In the following section the existing literature is

discussed. The model and methodology are described in the third section. The fourth

section addresses the issue of data and the sample selection. The fifth and sixth sections

present the main findings. The seventh and final section concludes the paper.

1.2 Related Literature

There is a range of literature which aims to explain inaccuracy in analysts’ forecasts4.

Another area of research concentrates more on the asymmetries of market perception of

new information arrivals. Bagchee (2009), for example, finds asymmetry in the reaction

of the investors based on the performance of the IPO of firms. If the firms upgrade,

the investors react to new information faster, while if they downgrade they adjust their

expectations approximately 3 times more slowly than after a positive signal. Larson and

Madura (2003) find that the reaction to the new information will be different depending on

whether it concerns losers (those stocks that have recently performed poorly) or winners

(those stocks that perform well). They find that while losers experience underreaction

from the market participants to the new information, winners, on the contrary, are more

likely to experience overreaction. These findings suggest that market players tend to act

not only based on the information they get but also on their own judgments and beliefs

formed by the contents of the new information obtained, which is consistent with the

previous finding of representativeness bias in updating beliefs (Kahneman & Tversky,

1972; Brav & Heaton, 2002).

Moreover, Hirshleifer, Lim, and Teoh (2009) find that analysts underreact more

when there are earnings announcements by other firms, which is explained by attention

distraction: the more information there is, the more difficult it may be to process it. In

comparison, I expect that it will be more difficult to process information about the same

firm if it gives multidirectional signals. The difficulties in interpreting signals may also

be noticed by the reaction of the market to the sequence of signals. If investors observe

signals of the same sign in several periods in a sequence, they may perceive it as a pattern

and overreact, while after receiving signals of different signs, investors underreact, not

4The literature includes the works of Abarbanell and Bernard (1992), Mikhail, Walther, and Willis
(2003), De Bondt and Thaler (1990), Benou (2003), Constantinou, Forbes, and Skerratt (2003), etc.
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knowing how to interpret contradictory signals (Poteshman, 2001; Kaestner, 2006). While

previous studies consider the time dimension for the sequence of news, it may be of interest

to see the reaction to signals which are sent simultaneously. For cases when firms send

only signals of the same sign, every subsequent signal will confirm a previous one. This

may lead to the correct interpretation of the information or it may cause overreaction,

while the signals of different signs may raise difficulties in interpreting their mutual effect

and lead to underreaction.

When creating their forecasts, analysts make extensive use of all available information.

Frankel and Lee (1998), for example, show that firms with particular characteristics such

as higher past sales growth and higher market-to-book ratios receive higher optimistic

forecasts by analysts. At the same time, Drake et al. (2011) and Jegadeesh et al. (2004)

show that information from accounting statements can indicate the direction of short

interest as well as revisions of analysts’ recommendations. It is also commonly accepted

that no particular financial ratio is informative unless it is considered as a part of the

more complicated set of signals. This happens because the relative level of indicators

rather than absolute value and/or their combinations are informative.

In fact, firms may give multidirectional and more complicated signals (the key financial

indicators are informative and as such they can be considered to be information signals):

some may be positive and others negative simultaneously. This implies that correct

interpretation of these signals separately without taking into account the rest may be a

difficult task. Consider the following situation. Suppose that firm’s earnings increased in

the last quarter, but its leverage also increased in the same time period. On the one hand,

the increase in earnings may imply some momentum in them. On the other hand, the

higher leverage may also signal a future decrease of profits due to increased liabilities, or

that the increase of the leverage is the result of a government’s quantitative easing policy.

A small increase in leverage may still be considered a positive signal if the leverage of a

firm compared to that of other firms in the same industry is low. Moreover, the change in

leverage may be the result of adjustments to the optimal level. Such adjustments may

imply additional resultant costs (Fischer, Heinkel, & Zechner, 1989), but firms deviating

from the optimal leverage ratio incur losses (Ju, Parrino, Poteshman, & Weisbach, 2002).

Small dividend policy changes can also be misleading. The dividends reductions can be

considered a signal of investment and potential growth (Décamps & Villeneuve, 2007)

or an excess need for cash, and poor performance. These findings are also supported

by Simpson, Emery, and Moreno (2009), who find evidence of overreaction hypotheses,
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uncertain information hypotheses, overoptimism, and market efficiency after dividend

announcements. A similar logic can be applied, let us say, to the inventory level, since

changes in inventory and sales can be the result of demand fluctuations rather than

indicators of a firm’s operating efficiency.

In addition to the accounting information of firms, the analysts’ forecasts are influenced

by market expectations (Mikhail, Walther, & Willis, 2009; and Lemmon & Portniaguina,

2006). While a range of authors establish the impact of market expectations on forecast

accuracy and the fact that accuracy is lowest during times when optimism is not explained

by fundamental values (Mikhail et al., 2009), Bergman and Roychowdhury (2008) show

that managers drive the analysts’ forecasts upwards or downwards during periods of

optimistic and pessimistic market expectations respectively. The authors explain this

phenomenon by the managers’ attempts to keep investors optimistic about the future of

their firms during low market expectations, while during high market expectations the

managers want firms to remain slightly undervalued. The authors also argue that the

choice of managers to drive analysts’ forecasts is strategic, but it would also be natural to

suspect that their strategic behavior is predetermined not only by the market expectations,

but also by the expected future prospects of firms and the uncertainty of these prospects

(or in other words by the financial ratios and their combinations).

If the choice of managers to “walk” the forecasts up or down really is strategic, the

market (and especially such sophisticated players as analysts) may treat the managers’

disclosures differently, since they may anticipate different reliability or implications of

these forecasts depending on the types of firms. Managers of low signal firms may have

many fewer incentives to drive the market expectation down even during optimistic

periods, while the managers of high signal firms can afford to drive the analysts’ forecasts

downwards even during pessimistic periods.

Moreover, it is expected that for the high signal group the managers’ forecasting

practices might be more strategic. Since the managers’ forecasts should be credible

(otherwise the market will disregard them), it is expected that their forecast will most

probably be accompanied by financial statements management. Given that the firms with

extreme financial performance indicators are more likely to engage in earnings management

(Dechow, Sloan, & Sweeney, 1995), it is the high signal group who is more likely to do so.

Moreover, the managers of the high signal group might have more freedom to manage

the financial statements if they decide to do so. This argument is consistent with the

findings of Barton and Simko (2002) who show that earnings management is constrained
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by double entry accounting which links the balance sheet and income statement: the

increase in earnings should be recognized as an increase in the net asset value. However,

since the net asset value should be reported according to the GAAP requirements, there

is an upper limit on the opportunistic increase in the earnings reported by managers.

The literature on managers’ strategic forecast releases shows that they will avoid

disclosure if they expect to achieve higher trading profits under the condition of non-

disclosure, but at the same time they may disclose more actively under circumstances of

higher volatility of earnings surprises and higher probability of liquidity shocks (Ma &

Chang, 2007). Other documented reasons for managers’ disclosure decisions include the

reputation effect (Bebbington, Larrinaga, & Moneva, 2008), maintenance of stock prices

(Pownall, Wasley, & Waymire, 1993), avoidance of negative earnings surprise (Burgstahler

& Eames, 2006), building of credibility, and conveying potential growth opportunities

(Graham, Harvey, & Rajgopal, 2005). Dobler (2008) shows, on the contrary, that the

value of managers’ forecasts should not be overestimated, since government regulation

cannot impose a verifiability mechanism on the managers’ disclosure practices.

Contributing to the literature on the managers’ disclosure, in my study I concentrate

on how the financial characteristics of a company and analysts’ perception of a firm can

motivate managers to release their forecasts. The arguments above suggest that the

managers of different signal groups may have different incentives and different possibilities

to release strategical forecasts. Additionally, by following the analysts, the managers

may identify their biases and try to correct or exploit any inefficiency. By behaving

strategically, managers try to drive the market in general, and analysts in particular. One

might expect that such strategic forecast releases may fail, because analysts may foresee

the incentives for managers to opportunistically manage them.

1.3 Methodology

With reference to the accuracy of analysts’ forecasts, it is normal in the literature

for regressions aimed at estimating analysts’ underreaction to earnings announcements

(running forecast errors on previous period earnings changes) to include only earnings

changes, returns, lagged forecast errors, number of firms followed by analysts, analysts’

experience, brokerage size, forecast age, and forecast frequency (Abarbanell & Bernard,

1992; Constantinou et al., 2003; Mikhail et al., 2009).

Since I hypothesize that the complexity of financial ratios leads to inefficiency on
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the analysts’ part, I am not interested in the impact of the change of every separate

variable, but rather the informativeness of all financial indicators taken together. In order

to implement the analysis and draw the inference, following the methodology of Jegadeesh

et al. (2004) and Drake et al. (2011) I assign each financial ratio a score depending on its

value relative to the prevailing levels in the industry in which the firm operates. As shown

by Piotroski (2000), Jegadeesh et al. (2004), Nguyen (2005) and Drake et al. (2011) the

sum of the scores can be considered as a screening device for the future performance of a

firm. These scores will allow me to differentiate those firms whose financial indicators are

strong from those whose are weak, as well as from those whose are both strong and weak.

The other explanation for using this approach in order to accomplish the goal of

this study is as follows. There is evidence that a combination of forecasts made on

different variables is more accurate than those based on a particular variable (Rapach

et al., 2010). It has been shown that the simple models can work better than more

elaborated models (Rapach et al., 2010). In these models a set of regressions is used and

the dependent variable in each regression is regressed on one explanatory variable. Then

the expected value of the dependent variable is calculated as an equally weighted average

of the predicted values taken from this set of regressions. The intuition behind the better

performance of forecast combinations is explained by the fact that individual specific

variables fail to capture macroeconomic fluctuations, while the use of only macroeconomic

variables does not take into account the specific economic performance and opportunities

of firms. However, the combination of both specifications delivers a synergic effect. In the

context of this study, every financial indicator included in the calculation of the scores has

predictive power for the earnings surprises5. By the construction of the score, the high

or low score is believed to signal potentially strong or weak future earnings respectively.

Since the analysts are sophisticated financial market players, they are expected to use the

informativeness of these variables for their forecasts.

For construction of the scores, the following groups of economic variables are taken

into account: profitability, operating efficiency, and capital structure. The profitability

ratios include sales profit margin (SPM), effective tax rate (ETR), interests-to-debt ratio

(INTD), and dividends-to-earnings (DE) ratio. The operating efficiency ratios include

asset turnover (TURNA), total accruals (TOTACR), capital expenditure (CAPEXP),

correlation between costs and revenues (CCR), assets growth (AG), and depreciation-to-

5The set of signals include those variables which were found to be significant for earnings predictability
by previous research (Dichev & Tang, 2009; Fairfield et al., 1996; Foster, 1977; Nissim & Penman, 2001).
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assets ratio (DA). The capital structure measures include book value-to-assets ratio (BVA),

market-to-book value (BM), leverage (L), common stock interest (CSI), and minority

stock interest (MSI). In order to test the informativeness of these signals, I construct a

signal informativeness model, in which I run the earnings per share on all of the signals6.

Additionally, I also include such variables as lag of earnings per share and size of firms,

but I consider these variables as the state variables and do not take them into account

when assigning scores to the signals.

The scores to each signal are assigned in the following way. Since the values of these

variables may differ across industries, the score is assigned relative to the percentile level

of a particular variable in the industry, where industries were determined by the 2-digit

Standard Industry Classification Code (SIC). For each of the financial indicators listed

above, a score of 0, 1, or 2 is assigned, depending on whether the indicator of the firm is

below the 35th percentile in the industry, between the 35th and 65th percentile, or is above

the 65th percentile. My approach of assigning the scores to the indicators differs only

slightly from the methodology of Jegadeesh et al. (2004), who assign 0 or 1 depending on

whether a particular indicator is below or above the median in the industry. In contrast, I

consider the level of every financial indicator around the median as being neutral and the

deviation in either of the sides as a positive or negative sign respectively7.

Since for such variables as SPM, TURNA, DE, CAPEXP, CCR, INTD, AG, and CSI,

the higher the value of these indicators, the more efficient the firm is, the score for each of

these variables is 0, 1, or 2 for the firms that have this value below the 35th percentile,

within the bound of the 35th and 65th percentile or above the 65th percentile respectively.

For such indicators as TOTACR, ETR, BVA, BM, L, DA, and MSI 2 points are given

to the firms for which the level of this indicator is below the 35th percentile, 1 and 0 to

those with these indicators in the range of the 35th and 65th percentile and above the

65th percentile, respectively8.

There are two main goals of this study. The first is to test whether there is a

heterogeneous perception of the analysts of high, low and mixed signal firms. The second

is to test how the combination of financial indicators or the signals can affect the accuracy

of the analysts’ and managers’ forecasts.
6The full specification and estimation results of signal informativeness model are provided in Appendix

1.A and 1.B respectively.
7A similar methodology but with slight modifications was also used by Piotroski (2000), Nguyen

(2005), and Drake et al. (2011).
8There were missing values in the data for some of the financial indicators. These were assigned score

1, since it is considered to be neutral (neither positive, nor negative).
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In order to achieve the first goal, I differentiate three main groups in my analysis:

those firms with a high number of weak signals (low signal firms), those with a high

number of strong signals (high signal firms), and those with high number of both high

and low signals (mixed signal firms). As the first step, I calculate the total score and the

standard deviation of the scores (or signals). Following the approach used by Piotroski

(2000), Jegadeesh et al. (2004), and Nguyen (2005), the total score is constructed as the

sum of the signals (or scores). The total score is supposed to capture how good the firm’s

key financial indicators are. The standard deviation of the scores measures the uncertainty

or heterogeneity of the signals. To finally form the groups, I further apply the following

rules:

Dlow = I[TotScore ≤ TotScore_25Per; sdScores ≤ sdScores_25Per]

Dmixed = I[sdScores ≥ sdScores_75Per]

Dhigh = I[TotScore ≥ TotScore_75Per; sdScores ≤ sdScores_25Per],

where Dj is the dummy variable, which is equal to one if a firm is considered to belong

to group j and zero otherwise, I[•] is the indicator variable, which is equal to 1 if the

conditions hold and zero otherwise, TotScore and sdScores are the sum and standard

deviation of the scores of the key financial ratios, TotScore_kPer and sdScores_kPer

is the k-th percentile of the total score and standard deviation of the scores respectively9.

To answer the question whether the analysts treat different signal groups heteroge-

neously, I use the Kolmogorov-Smirnov test and test the equality of distributions of the

9The intuition behind the imposed rules is as follows. Let us consider the rule for the low signal group.
Conditioning on a low total score selects into a low signal group those firms who have a high number of
low signals. At the same time, conditioning on a low standard deviation also warrants that the firms
do not just have a high number of low signals, but that they have most of them. Similar logic can be
applied to a high signal group. The rule of forming the mixed signal group is even more straightforward:
conditioning on a high standard deviation of the scores selects those firms who have the highest amount
of multidirectional signals.

Another approach to forming the groups was also considered: to form the low signal group only with a
high number of low signals, some neutral signals and no high signals; for the high signal group to include
only firms with a high number of high signals, some neutral signals and no low signals; and to construct
the mixed signal groups of firms with high numbers of both positive and negative signals. This approach
may be in line with the research question, but could also lead to the situation in which I would be working
with very specific types of firms. In contrast, although one may argue that following the approach I am
using, the low signal group may include a couple of high signals, and the high signal group may include
a few low signals, this approach nevertheless seems more plausible, since firms with even one or two
negative (low) signals on the background of, say, 5 positive (high) signals will be perceived as rather
financially strong and stable. The same argument can be applied to the low and mixed signal groups.
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analysts’ forecast errors across different types of firms. Rejecting the null hypothesis of

equality of forecast errors distribution across different types of firms will provide evidence

that the analysts tend to have different biases in the forecasts for different types of firms.

Further, I study analysts’ and managers’ forecast accuracy. All models used in

the analysis of the accuracy of the forecasts are nested in the following general form

specification10:

Y = α + βX + γZ + πM + η, (1.1)

where Y is the vector of dependent variables. Matrix X contains the control variables

representing the characteristics of analysts. Matrix Z consists of control variables repre-

senting the characteristics of the firms. Control variables of macroeconomic conditions are

contained in matrix M . Vector η consists of the error terms with zero mean and constant

variance.

For my analysis of the accuracy of analysts’ forecasts, I follow the specifications of

Abarbanell and Bernard (1992), Constantinou et al. (2003), and Mikhail et al. (2009).

While Abarbanell and Bernard (1992), Constantinou et al. (2003) use the simple OLS,

Mikhail et al. (2009) use the fixed effect model. I use the first difference estimator, since

it allows me to take into account the possible firm-analyst fixed effects as well as potential

serial correlation of idiosyncratic errors.

In the models of forecast accuracy I study two aspects of forecast accuracy: a direction

of forecast inaccuracy and forecast precision. The direction of forecast inaccuracy shows

whether the analysts’ or managers’ forecasts tend to under- or overestimate actual values,

while forecast precision measures how far the forecasts deviate from the actual values. In

the model of analysts’ forecast accuracy, vector Y represents the vector of their forecast

errors (in the submodel of the direction of forecast inaccuracy) or absolute forecast errors

(in the submodel of forecast precision). Matrix X, with the analysts’ characteristics,

includes lag of dependent variable (a forecast error or its absolute value in the previous

quarter), forecast age, forecast frequency, and the number of firms followed by the analysts

in the same 2 digit SIC industry. The set of variables of matrix Z includes momentum

and reversal in the earnings change. In my specification, matrix Z also includes the total

score and the standard deviation of the scores, on which I form signal groups. Matrix M

is constituted by control variables of macroeconomic conditions such as the fundamental

10All the estimation equations with the variable construction description are provided in Appendix 1.A.
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and residual parts of consumer sentiment, and quarter dummies.

Next, I analyze managers’ forecast behavior and analysts’ responses to their forecast

releases. In order to test whether the managers’ forecast errors differ across types of firms,

I use the ordinary least squared estimation of equation (1.1), which contains matrices Z

and M as the matrices of explanatory variables.

In this model, Y is the vector of managers’ forecast errors (in the submodel of the

direction of forecast inaccuracy) or their absolute values (in the submodel of forecast

precision). Among the firms’ specific characteristics of matrix Z are the mean returns

and standard deviation of returns, mean abnormal trading volume over 10 trading days

prior to the managers’ forecast release date, since Rogers and Stocken (2005) find that

market information matters for the managers’ forecast accuracy. Following Ma and Chang

(2007), I include the standard deviation of the analysts’ forecasts. Combining the findings

of Bergman and Roychowdhury (2008) with those of Mikhail et al. (2009), I include the

following firm specific variables: the mean bid-ask spread over 10 trading days prior to

the managers’ forecast release date, and standard deviation of price over the last half a

year prior to the managers’ forecast announcement date, dummy variable of loss in the

previous quarter, dummy variable of negative managers’ forecasts, dummy variable of

“bad’ news, which is defined as such if it is below the analysts’ mean forecast; interaction

term of dummy of “bad” news and managers’ forecast news, where the news defined as the

difference between the analysts’ mean forecast and managers’ estimate; forecast horizon,

industry concentration, insider transaction, and the size of the firms. Macroeconomic

variables including fundamental and residual parts of consumer sentiment are contained

in matrix M .

To test the impact of analysts’ heterogeneity on the managers’ incentives to release

forecasts, I construct the analysts’ bias variable. For this purpose, I run model 1.1 of

the of analysts’ forecasts precision, save the explained and residual parts, and average

the latter over analysts for a firm for the respective quarter. While the predictable part

should take into account the rational portion of analysts’ forecast imprecision, the residual

part should contain the irrational bias. This is because if the error term from model 1.1 is

represented by:

ηj,j,t = bi,j,t + εi,j,t, (1.2)

where bi,j,t is the bias of analyst i for firm j in period t, and εi,j,t is the error term with
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zero mean and constant variance. Then averaging ηi,j,t over analysts for a particular firm

i results in η̄j,t = b̄j,t or, in other words, in the average bias for the firm.

To test the hypothesis that analysts discount managers’ forecasts and that their

discount factor will depend on the type of the firm, I use the robust least squared

estimator for equation (1.1), but here Y is the vector of analysts’ adjustment and the

estimation equation includes X, Z, and M as matrices of explanatory variables.

From the set of the explanatory variables of analysts’ adjustments, managers’ forecasts,

managers’ forecast range, total score, and standard deviation of signals are of primary

interest. Among the other firm specific variables are: the mean stock returns and

standard deviation returns over 10 trading days prior to the analyst’s forecast revision

date, mean abnormal trading volume and mean bid-ask spread over 10 trading days prior

to the analyst’s forecast revision date, dummy variable of a negative managers’ forecast,

dummy variable of “bad” managers’ news, interaction term of dummy of “bad” news and

forecast news, managers’ forecast horizon, industry concentration, insiders’ transaction,

firm’s size, standard deviation of analysts’ forecasts. One might expect that analyst’s

accuracy characteristics may also have an impact on his/her adjustment. For this reason, I

include such explanatory variables as analyst’s forecast age and forecast frequency, general

experience and the number of firms followed by the analysts in the same 2-digit SIC

industry. As in the previous models, I also include the fundamental and residual parts of

consumer sentiment.

Lastly, I analyze the probability of having a larger forecast error after the revision

(for those analysts’ who revised their forecasts) and use the same explanatory variables

as the model with forecast adjustments by analysts, but vector Y includes the indicator

variables of 1 and 0, if the absolute forecast error is bigger or smaller after the revision,

respectively.

1.4 Data and Sample Selection

In the analysis five main databases were used: Compustat, CRSP, and Thomson Reuters

I/B/E/S, First Call, and Insider Filings.

Compustat

Compustat is a database on accounting, and some market information on active

and inactive public and private companies, but for the latter to be included in the

database a number of years of history as a public company is required. The data provides
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the information obtained from firms’ income statements, balance sheets, statements

of cash flow, market and supplemental data items. It is common to distinguish two

databases within Compustat - Compustat North America and Compustat International

(or Compustat Global). The Compustat North America database gathers accounting

information on US and Canadian firms at the annual and quarterly frequency, and covers

over 14,650 active companies and over 16,950 inactive companies.

From this database I take the quarterly data of US firms on earnings per share

excluding extraordinary items, operating income, depreciation, revenues, costs, cash,

capital expenditures, income taxes, pretax income, interests paid, income before extraor-

dinary items available to common stock holders, common stockholder equity, depreciation,

non-controlling equity, total assets, total liabilities, long-term debt and debt in current

liabilities.

CRSP

The Center for Research in Security Prices (CRSP) US stock database contains stock

market data on more than 20000 stocks from the major stock exchanges, i.e. NYSE,

AMEX, and NASDAQ. The data set contains data on security prices and price quote data,

holding period returns and excess returns, market capitalization and shares outstanding,

trading volume and market indices, corporate actions and security delisting information.

The data are available at the daily, monthly, quarterly, and annual frequencies. From the

CRSP data set prices, returns, number of shares outstanding, trading volumes, and CRSP

value-weighted index dividend yield are taken for my analysis.

I/B/E/S

The Institutional Brokers’ Estimate System (I/B/E/S) database gathers information

on the brokerage analysts’ historical estimates of major accounting indicators such as

earnings per share, cash flow, revenues, and long-term growth projections, as well as stock

recommendations. The detail history file contains the detail information on the analysts’

individual forecasts. The summary file contains the consensus estimates including mean,

median, standard deviation, number of forecasts, etc. The database covers more than

30000 global companies. For my analysis, I collect the analyst-by-analyst earnings per

share forecast from the detail history file of I/B/E/S.

First Call

The First Call Historical Database file includes company-issued guidance data such as

quarterly and annual management earnings forecasts and earnings preannouncements. The

database covers more than 6,000 North American companies and 2,000 global companies
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and contains earnings guidance in the form of point estimates, range of estimates (forecasts

upper and lower bounds), and qualitative disclosure providing the direction of the earnings

guidance (positive, negative, or neutral). From this database, I collect the managers’

quarterly point estimates and their forecasts’ lower and upper bounds.

Thomson Reuters Insider Filings

The Insider Filings database gathers line-by-line detail information on trades in equity

and other securities by individuals and institutions, which are defined as “insiders” by

the US Securities and Exchange Commission (SEC), and includes insiders’ activity as

reported on SEC Forms 3, 4, 5 and 144. This database provides the flow or data on

transactions (buying and selling of stock) rather than the stock of insiders’ holdings. In

addition, the database also checks the reported values for inaccuracy, which may arise

mostly due to reporting inconsistencies within the SEC documents from which the data

are pulled, and provides so called “cleansed” value for comparison. This database was

used for collecting information on the insiders’ buying and selling of the securities.

Other databases

For controlling the impact of market expectations on the analysts and managers, the

Michigan consumer sentiment index was downloaded from the Federal Reserve Bank of

St. Louis Economic Research website for which data are available from June 1978. To

obtain the predicted values from consumer sentiment, the WRDS web database was used

to obtain such data as US GDP growth, consumption growth, labor income growth, yields

on Baa and Aaa rated corporate bonds, 10 year yields on US government bonds; and

yields on one month and three month Treasury bills.

Sample Selection

For comparison of the distributions of forecast errors I am considering all quarterly

earnings forecasts, which were produced within a given fiscal quarter (over the last three

months by the end of the quarter) and were released by the end of the fiscal quarter.

The sample for the analysis of the analysts’ and managers’ forecast accuracy is restricted,

respectively, as to whether the managers produced their forecasts. This sample is restricted

further for the analysts’ revisions sample as to whether the analyst revised her forecast

after the managers’ forecast release. Since I want also to check the managers’ responses

to the existing analysts’ forecast bias, in the managers’ forecast model for constructing

the analysts’ bias and predicted forecast error I consider only those analysts’ forecasts

which were released by the managers’ forecast announcements. For each model, in order

to avoid the forecast error being inflated when calculating the forecast error I drop those
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observations with the mean price below one dollar (since the forecast error was calculated

as the difference between the actual and forecasted levels scaled by the mean price over

the last 10 trading days prior to the appropriate forecast release).

In order to avoid the impact of outliers, I drop the observations in the following

ways. For the comparison of the distribution of the analysts’ forecast errors, I trim all

the forecast errors on the 1st and 99th percentiles. In the regression analysis, I use the

blocked adaptive computationally efficient outlier algorithm proposed by Billor, Hadi, and

Velleman (2000), which is believed to be a more efficient way of detecting the outliers in

the multivariate data.

The final data sample spans from March 1993 to September 2010 and represents 2852

different firms and 10289 analysts. For the analysis of the analysts’ forecast errors I have

77,478 firm-quarters observations in my sample. In this sample, I have 6,613 observations

for the low signal group, and 20,908 and 7,939 for the mixed and high signal groups

respectively. For the analysis of the managers forecast errors I have 66,763 observations

for the whole sample, and low, mixed and high signals groups were represented by 5,510,

17,489, and 7,698 observations respectively. The analysis of the forecast adjustments of

analysts and their accuracy after adjustments was made with 50,257 observations for the

whole sample, of which 4,502 observations belonged to the low signal group, and 10,880

and 8,120 to the mixed and high signal groups.

1.5 Statistical Comparison of Analysts’ Forecast Errors

1.5.1 The Effect of Signal Groups

If analysts are influenced by financial indicators, their combinations, and/or their signs

(positive (high) versus negative (low) signals), it is natural to suspect that the distribution

of their forecast errors will be different across these types of firms. In my analysis, I

decided to compare the distribution of 4 main groups:

• firms with mixed signals versus the rest of the firms;

• firms with mixed signals versus firms with low signals;

• firms with mixed signals versus firms with high signals;

• firms with low signals versus firms with high signals.
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Table 1.1: Distribution parameters of the subgroups

Group Mean Median SD Variance Skewness Kurtosis
Low signal group -0.55 -0.04 2.32 5.40 -4.49 30.90
Mixed signal group -0.30 0.03 2.11 4.46 -5.41 42.44
High signal group -0.05 0.04 1.21 1.48 -5.51 64.22
Group with no changes in
the scores

-0.27 0.04 2.06 4.22 -5.84 50.11

Group with changes in the
scores

-0.23 0.03 1.77 3.13 -5.68 51.06

Group with only negative
changes

-0.31 0.03 2.01 4.03 -5.93 47.92

Group with only positive
changes

-0.12 0.05 1.50 2.25 -5.66 57.22

Group with a high number
of negative changes and no
positive changes

-0.20 0.04 1.66 2.75 -5.51 55.43

Group with a high number
of positive changes and no
negative changes

-0.02 0.08 1.20 1.43 -5.76 73.55

Group with equal an
number of positive and
negative changes

0.05 0.09 1.01 1.01 -0.99 10.26

The Kolmogorov-Smirnov test shows that the distributions of forecast errors are not the

same for each of the subgroups above. The comparison of distribution parameters (the

data are provided in Table 1.1) indicates that the mean forecast error in absolute value is

the highest for the low signal group. In level terms, the mean is the lowest for the low

(-0.55) and the highest for the high signal groups (-0.05), with the mixed signal group

being between these values (-0.30). This implies that the analysts tend to overestimate

the most future performance for the lowest signal group11. The values of medians keep the

same ordering of the groups: medium is the smallest for the low signal group (-0.04) and

the highest for the high signal group (0.04), with the mixed signal group being between

these two values (0.03).

The standard deviation (variance) of the forecast errors is the highest for the low

signal group (2.32) and the spread of the forecast errors is the smallest for the group with

high signals (1.21). From comparison of skewness, one can see that the distribution is

skewed to the left and the skewness to the left is the highest for the firms in the high

11This inference comes from the construction of the variable forecast error which equals the difference
between the actual and forecasted value of the earnings per share scaled by price and multiplied by 100.
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signal group (-5.51) and the lowest for the low signal group (-4.49). The negative skewness

in our context implies that the analysts’ forecasts frequently undershoot the actual value

of earnings per share, though at times the forecasts are extremely overoptimistic. Kurtosis

also signals that the tails of distribution are the fattest for the high signal firms (64.22)

and the thinnest for the firms with low signals (30.90), which in turn implies that the

chances of extreme outcomes (forecast errors) are the highest for the high signal group.

Overall, we may conclude that biases in analysts’ forecasts depend on the types of firms

and that their forecast errors are not homogeneous across firms.

1.5.2 The Effect of Changes in Signals

It is definitely interesting to examine whether the analysts are confused by multidirectional

signals. Nevertheless, it might be the case that sooner or later market participants (and

especially sophisticated participants such as analysts) can infer the source of their confusion

and adjust their information processing. This may result in more precise forecasts, even

for firms with a confusing component. Motivated by these considerations, I decided to

compare the distribution of the analysts’ forecast errors depending on the changes in the

scores. Further, analysts may react asymmetrically depending on whether there were

positive changes (for example when the score changed its value from 0 to 1) versus negative

changes (for example when the score changed its value from 1 to 0). At this stage, I

compare the distribution of the forecast errors for the following groups:

• firms without changes versus those with changes in the scores;

• firms without changes versus those with only negative changes;

• firms without changes versus those with only positive changes;

• firms with positive changes versus those with negative changes.

The Kolmogorov-Smirnov test shows that these subgroups do not have the same distribu-

tion functions. From Table 1.1, one can see that the mean forecast error for the subgroup

which had no changes in the signals is even more negative (-0.27) than that for firms which

had some changes (-0.23), while the medians are almost the same for both groups (0.04

and 0.03 respectively). The standard deviation, unexpectedly, is higher for the subgroups

with no changes in the signals (2.06 versus 1.77). The forecast errors are also more skewed

to the left for the group without changes (-5.84 versus -5.68), but kurtosis is smaller for

27



this type of firms compared to firms which had some changes in the signals (50.11 versus

51.06).

Comparing the groups with only negative changes versus positive changes, the mean

forecast error for the subgroup with only negative changes is more negative (-0.31 versus

-0.12) and the standard deviation is higher for this subgroup (2.01 versus 1.50). The

subgroup with only negative changes is more skewed to the left (-5.93 versus -5.66) but

has lower kurtosis (47.92 versus 57.22). The higher kurtosis for the latter group suggests

that the analysts tend to be more either over- or undershooting and the lower standard

deviation for this group indicates that they are more aligned in doing so.

1.5.3 The Effect of Asymmetry of Signal Changes: Positive ver-

sus Negative Changes

To check the asymmetry in the analysts’ responses to the positive and negative changes in

the financial indicators, I test the equality of forecast errors’ distributions of firms which

had:

• a high number of positive changes and no negative changes versus the rest of the

sample;

• no positive changes and a high number of negative changes versus the rest of the

sample;

• an equal number of positive and negative changes versus the rest of the sample;

• a high number of positive changes and no negative changes versus no positive changes

and a high number of negative changes;

• a high number of positive changes and no negative changes versus those with an

equal number of positive and negative changes;

• no positive changes and a high number of negative changes versus those with an

equal number of positive and negative changes.

Again, the Kolmogorov-Smirnov test shows that these subgroups do not have the same

distribution functions. The mean forecast error (Table 1.1) in absolute value is the largest

for the subgroup with a high number of negative changes in the signals (-0.20), and the

lowest for firms with a high number of positive changes in the signals (-0.02), which may
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imply that the analysts underreact the most to negative changes in the balance sheet

of the firms. We can also see that the standard deviation in the forecast errors is the

highest for firms which had a high number of negative changes (1.66) and the lowest for

the firm with an equal number of positive and negative changes in the signals (1.01). The

forecast errors for the subgroup with a high number of positive changes are skewed to

the left the most (-5.76) and have the highest kurtosis (73.55) compared to the subgroup

with an equal number of positive and negative changes with the lowest left-skewness

(-0.99) and kurtosis (10.26). The highest skewness to the left and highest kurtosis for

the group with a high number of positive and negative changes leads to either higher

overshooting or undershooting of analysts’ forecasts. This also suggests that analysts may

often extrapolate the positive changes too much, but also frequently underestimate them.

The lowest standard deviation for the subgroup with an equal number of positive and

negative number of changes may suggest that changes in signals in both directions can

neutralize each other, preventing from either overshooting or undershooting (the kurtosis

is the smallest for this group), and lead to more aligned forecasts.

1.6 Results

1.6.1 Are Analysts’ Perception of Earnings the Same across Groups?

In order to further test the heterogeneity of the analysts’ perception of different signal

groups, I run the models of analysts’ forecast inaccuracy and forecast precision for

the whole sample, consisting of all firms in my sample, and separately for each of the

signal groups. Since I am also interested in how the combination of the signals and the

uncertainly associated with them affect the analysts’ accuracy, I include my total score

and the standard deviation of the scores. The full specification of the model is as follows:

FcErri,j,t(AbsFcErri,j,t) = β0 + β1TotScorej,t + β2sdScoresj,t +

+β3MomEarnj,t + β4RevEarnj,t + βP + ηi,j,t (1.3)

where FcErri,j,t and AbsFcErri,j,t - the forecast error of analyst i for firm j in quarter t

and its absolute value respectively multiplied by 100, where the forecast error is calculated

as the difference between the forecasted level and actual earnings per share, scaled by
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the mean stock price over 10 trading days before the day of the forecast announcement;

TotScorej,t and sdScoresj,t - the sum and standard deviation of the scores of the key

financial ratios; MomEarnj,t - the momentum of the previous period earnings change,

which is equal to the change in earnings between t− 2 and t− 1 if the change is of the

same sign as the change in the current period, between time interval t − 1 and t, and

0 otherwise; RevEarnj,t - the reversal of the previous period earnings change, which is

equal to the change in earnings between t− 2 and t− 1 if the change is of the opposite

sign as the change in the current period, in a time interval between t − 1 and t, and 0

otherwise; P is the matrix of other control variables; and ηi,j,t - the error term.

The estimation results of the analysts’ forecast accuracy model are presented in Table

1.2. Panel A contains the results of the model of the direction of analysts’ forecast

inaccuracy, while Panel B contains the results of analysts’ forecast precision model. Here

the estimates next to variables including the total score, standard deviation of scores,

momentum and reversal in the earnings changes are of primary interest. From the

regression for the whole sample, I find that the estimates of the total score and standard

deviation of scores are both significant and positive. Since the total score variable can

signal the future earnings of the firm, the positive sign of the coefficient next to it implies

that the analysts tend to underestimate the earnings with the increase in the signals.

The positive sign next to the estimate of the standard deviation of the scores I explain

as the analysts’ tendency to restrain themselves from being too optimistic observing

multidirectional signals.

Comparing the estimates across low, mixed and high signal groups, I find that the

estimate of the total score is significant and positive for the mixed signal groups, but it

is significant and negative to for the low signal group. This suggests that the analysts

tend to underestimate and overestimate the earnings for the mixed and low signal groups

respectively with an increase in the total score. At the same time, an increase in the

total score was not found to impact the direction of analysts’ inaccuracy for the high

signal group. The estimates next to the standard deviation of the scores is significant and

positive for all signal groups. This might result from the fact that analysts are trying to

avoid too optimistic forecasts observing the increase in heterogeneity of the signals.

The estimates of momentum and reversal of earnings change were found to be significant

for all groups and were not found to differ across the groups. The positive sing next to the

momentum in the earnings change implies underestimation of earnings due to momentum.

On the other hand, the significant and negative estimate of the reversal leads rather to
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Table 1.2: Analysts’ forecast errors

VARIABLES whole sample low mixed high

Panel A. Direction of analysts’ forecast inaccuracy

TotScore 0.01*** -0.02*** 0.01*** 0.00
(0.00) (0.01) (0.00) (0.00)

sdScores 0.65*** 0.74*** 0.66*** 1.03***
(0.08) (0.28) (0.16) (0.19)

MomEarn 0.64*** 0.68*** 0.79*** 0.72***
(0.03) (0.10) (0.06) (0.05)

RevEarn -0.37*** -0.31*** -0.45*** -0.37***
(0.02) (0.04) (0.03) (0.07)

Other controls X X X X
Observations 77,478 6,613 20,908 7,939
Adjusted R-squared 0.061 0.060 0.091 0.127

Panel B. Analysts’ forecast precision

TotScore -0.00 0.02*** -0.00 0.00
(0.00) (0.01) (0.00) (0.00)

sdScores -0.69*** -0.78*** -0.74*** -0.70***
(0.08) (0.26) (0.15) (0.18)

MomEarn -0.18*** -0.37*** -0.17*** -0.08
(0.03) (0.07) (0.05) (0.05)

RevEarn 0.04*** 0.11*** 0.04 -0.04
(0.01) (0.02) (0.03) (0.07)

Other controls X X X X
Observations 77,478 6,613 20,908 7,939
Adjusted R-squared 0.024 0.048 0.027 0.053

Note:FcErr and AbsFcErr - the forecast error and absolute value of forecast error multiplied by 100, where the forecast
error is calculated as the difference between the actual and forecasted level of earnings per share, scaled by the mean stock
price over 10 trading days before the day of the forecast announcement; TotScore and sdScores - the sum and standard
deviation of the scores of the key financial ratios; MomEarn - the momentum of the earnings change in the previous period,
which is equal to the change in the earnings between the previous two quarters if the change is of the same sign as the
change in the current quarter; RevEarn - the reversal of the earnings change of the previous period, which is equal to the
change in earnings between the change in the previous two quarters if the change is of the opposite sign as the change in
the current quarter, and 0 otherwise. Definition of other control variables is provided in Appendix 1.A. Robust standard
errors are provided in parentheses. *** p<0.01, ** p<0.05, * p<0.1

31



overestimation.

The estimation results of the submodel of analysts’ forecast precision are presented in

Panel B of Table 1.2. The estimate of the total score for the analysts’ forecast precision

model is significant and positive only for the the low signal group. Since the dependent

variable for this model is defined as the absolute value of a forecast error, the positive sign

of the estimate implies that analysts’ forecast precision for this group decreases as the

total score increases. From this I conclude that an increase in the total score leads to a

decrease in analysts’ forecast precision errors for the low signal group, while the mixed and

high signal groups are not affected. The estimates of the standard deviation of the scores

in the analysts’ forecast precision model are significant for the whole sample and all the

signal groups. What is interesting to see is that the sign is negative, which again implies

that analysts tend to produce more precise forecasts with an increase in heterogeneity in

the information signals. I hypothesize that this may result from a possible representative

bias. Observing the signals which point in the same direction, analysts may produce too

optimistic or too pessimistic forecasts, and vice versa, if they observe more heterogeneous

signals more diligence or attention is invested, and it may lead to more precise forecasts.

This explanation can also be consistent with my finding that the estimates of the

momentum are significant and negative for the whole sample, as well as the low and mixed

signal groups, while the estimates of the reversal are significant and positive for the whole

sample and low signal group. The positive sign of the reversal in earnings may imply

that analysts extrapolate the momentum in earnings surprise too much, which decreases

analysts’ forecast precision when reversal in the earnings happens. It is also interesting to

see that, while analysts’ forecast precision for the low signal group is affected by both the

momentum and reversal in the earnings, analysts’ forecast precision for the high signal

group was not found to be affected by either of them.

1.6.2 Do Managers’ Forecast Biases Differ across Groups?

Since I hypothesize that the managers’ may realize the analysts’ heterogeneity in the

treatment of the signal groups, I further study the managers’ forecast accuracy. For these

purposes, I use the following model (the full specification of which is provided in equation

1.8 in Appendix 1.A):
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ManFcErrj,t(AbsManFcErrj,t) = β0 + β1TotScore+ β2sdScoresj,t +

+β3AnFcErrPredj,t + β4AnBiasj,t + β5sdAnFcj,t + βP + ωj,t (1.4)

where ManFcErrj,t and AbsManFcErrj,t - the managers’ forecast error or its absolute

value, where the forecast error is defined as the difference between the actual and the

forecasted level, scaled by the mean price over 10 trading days prior to the managers’

forecast announcement date and multiplied by 100; TotScorej,t and sdScoresj,t - the

sum and standard deviation of the scores of the key financial ratios; AnFcErrPredj,t
and AnBiasj,t - the explained part and the mean of the residual part from the analysts’

forecast precision model 1.3; sdAnFcj,t - the standard deviation of the analysts’ forecasts

for firm j in quarter t known to the market on the day of the managers’ forecast release;

and P is the matrix of other control variables; and ωj,t - the error term with zero mean

and constant variance.

Table 1.3 provides the estimation results of the model of the direction of managers’

forecast inaccuracy (Panels A) and the model of managers’ forecast precision (Panel B)

respectively. There are 5 main estimates of primary interest: the total score, standard

deviation of scores, standard deviation of analysts’ forecasts, analysts’ bias, and predicted

parts of analysts’ absolute forecast errors.

For the submodel of the direction of managers’ forecast inaccuracy (Panel A in Table

1.3), all of the variables of interest have different effects on the forecast releases of

managers across different types of firms (all of the estimates were found to differ across

the groups). The estimates results suggest that the managers of the low signal group tend

to overestimate the earnings per share with an increase in the total score. One of the

possible reasons might be managers’ attempts to avoid stocks underpricing, which leads

them to driving the analysts’ expectations slightly upwards. For the mixed signal group,

an increase in the total score leads rather to managers’ underestimation. The managers’

forecast error for the high signal group is not affected by the change in the total score.

The standard deviation of the scores should reveal an impact of uncertainty associated

with the key financial ratios. Here I also find asymmetry in the managers’ forecasts

between managers of the low, mixed and high signal group. An increase in the standard

deviation of the scores cannot explain the managers’ forecast errors for the high signal

group. In contrast, the managers of the low and mixed signal groups underestimate future
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Table 1.3: Managers’ forecast errors

VARIABLES whole sample low mixed high

Panel A. Direction of managers’ forecast inaccuracy

TotScore 0.00*** -0.05*** 0.02*** -0.00
(0.00) (0.01) (0.00) (0.00)

sdScores 0.17*** 0.52** 1.99*** 0.17
(0.03) (0.21) (0.15) (0.14)

AnFcErrPred 0.04 -0.08 0.21*** 0.61***
(0.03) (0.07) (0.03) (0.05)

AnBias -0.13*** -0.31*** -0.13*** -0.07***
(0.01) (0.03) (0.02) (0.01)

sdAnFc -0.74*** -1.62** -0.33 -0.16
(0.14) (0.68) (0.23) (0.16)

Other controls X X X X
Observations 66,763 5,510 17,489 7,698
Adjusted R-squared 0.205 0.504 0.211 0.320

Panel B. Managers’ forecast precision

TotScore -0.01*** 0.00 -0.03*** -0.01***
(0.00) (0.01) (0.00) (0.00)

sdScores -0.26*** -0.20 -1.41*** -0.26**
(0.03) (0.19) (0.13) (0.10)

AnFcErrPred -0.05* 0.35*** -0.16*** -0.69***
(0.03) (0.06) (0.03) (0.04)

AnBias 0.13*** 0.33*** 0.15*** 0.11***
(0.01) (0.02) (0.01) (0.01)

sdAnFc 1.56*** 3.12*** 1.20*** 0.85***
(0.13) (0.61) (0.21) (0.13)

Other controls X X X X
Observations 66,763 5,510 17,489 7,698
Adjusted R-squared 0.192 0.574 0.193 0.239

Note: ManFcErr and AbsManFcErr - the managers’ forecast error and its absolute value, where the forecast error is
defined as the difference between the actual and the forecasted level, scaled by the mean price over 10 trading days prior
to the managers’ forecast announcement date and multiplied by 100; TotScore and sdScores - the sum and standard
deviation of the scores of the key financial ratios; AnFcErrPred and AnBias - the explained part and the mean of the
residual part of the analysts’ forecast precision model 1.3; sdAnFcj,t - the standard deviation of the analysts’ forecasts for
firm j in quarter t known to the market on the day of the managers’ forecast release. Definition of other control variables
is provided in Appendix 1.A. Robust standard errors are provided in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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earnings with an increase in the heterogeneity in the signals and the underestimation is

higher for the mixed signal group (the estimates for the low and mixed signal groups are

not equal at the 5% significance level).

With an increase in the predictable part of the analysts’ forecasts, the managers tend

to underestimate future earnings per share for the mixed and high signal groups and the

underestimation is higher for the high signal group (the estimates are not equal for the

groups at the 5% significance level).

With the increase in the analysts’ bias (or the mean of the unpredictable part of the

analysts’ absolute forecast error), the managers tend to overestimate the earnings, and

they tend to do so even more for the low signal group (the estimates are not equal across

the groups at the 5% significance level).

The standard deviation of the analysts’ forecasts was found to be significant and

negative only for the low signal group, implying that the managers of the low signal

group tend to overestimate the earnings with an increase in the standard deviation of the

analysts’ forecasts.

Panel B of Table 1.3 contains the estimation results of the managers’ forecast precision

submodel. The estimates of the total score is significant and negative for the whole sample

and the mixed and high signal groups, implying that the managers release more precise

forecasts for the latter, with an increase in the total score. The estimate of the standard

deviation of the scores is significant and negative for the whole sample and the mixed and

high signal groups, implying a higher managers’ forecast precision, with an increase in the

heterogeneity of informational signals for these groups. This effect is more pronounced

for the mixed signal group (the estimates are not equal across the groups at the 5%

significance level).

The impact of the predicted part of the analysts’ absolute forecast error is also not

equal across the groups. While for the low signal group the managers’ forecast precision

decreases with the increase in the predictable part of the analysts’ absolute forecast error,

the managers’ forecast precision increases for the mixed and high signal groups and the

effect is stronger for the high signal group (the estimates were found to differ across the

groups at 5% significance level).

The analysts’ bias decreases the managers’ forecast precision for all of the signal groups

and it does so the most for the low signal group (the estimates of the low signal group are

not equal to those of the mixed and high signal groups at the 5% significance level; at the

same time, the estimates of the mixed and high signal groups were not found to differ at
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the 5% significance level).

An increase in the standard deviation of the analysts’ forecasts leads to lower managers’

forecast precision and the effect is the strongest for the low signal group, the estimate for

which was found not to be equal to the estimates of the mixed and high signal groups at

the 5% significance level (although the estimates for the mixed and high signal groups do

not differ at the 5% significance level).

1.6.3 Do the Analysts’ Discount the Managers’ Forecasts?

To study the analysts’ response to the managers’ forecasts, I develop a model of analysts’

forecast revision and their forecast accuracy after the revision. In the former model, I use

an OLS estimator, where the dependent variable is the level of forecast adjustment. In

the later one, using the linear probability model, I estimate the probability of observing

the larger absolute value of the forecast error after the revision. The specification of the

models is the following:

AnAdji,j,t(AnAccRevi,j,t) = β0 + β1ManFcj,t + β2ManFcRanj,t +

+β3ManFcRanLowj,t + β4TotScorej,t + β5sdScoresj,t + βP + εi,j,t (1.5)

where AnAdji,j,t - the forecast adjustment of analyst i for firm j in quarter t, where

the adjustment is equal to the difference between the new forecast and the old one;

AnAccRevi,j,t - the dummy variable which equals 1 if the absolute value of an analyst’s

i forecast for firm j after revision is larger than that before revision and 0 otherwise;

ManFcj,t - the managers’ earnings forecast of firm j in quarter t; ManFcRanj,t - the

range of managers’ earnings forecast and equals the difference between the upper and

the lower bound managers’ forecast if both estimates are available and zero otherwise;

ManFcRanLowj,t - the difference between the point forecast and the lower bound of

the managers’ forecast if only the point forecast and the lower bound of the forecast

are available and zero otherwise; TotScorej,t and sdScoresj,t - the sum and standard

deviation of the scores of the key financial ratios; P is the matrix of other controls; and

εi,j,t - is the error term with mean zero and constant mean.

Panel A and B of Table 1.4 contain the estimates from the model of analysts’ forecast

revisions and forecast accuracy upon managers’ forecasts respectively. With the increase
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Table 1.4: Analysts’ forecast revisions

VARIABLES whole low mixed high

Panel A. Analysts’ forecast adjustments

ManFc 0.02*** 0.01** 0.02*** 0.02***
(0.00) (0.00) (0.00) (0.00)

ManFcRan -0.03*** 0.01 -0.04 -0.08***
(0.01) (0.03) (0.02) (0.02)

ManFcRanLow 0.35*** 4.39*** 0.61 -0.03
(0.06) (0.55) (0.53) (0.20)

TotScore -0.00 -0.00** -0.00** 0.00***
(0.00) (0.00) (0.00) (0.00)

sdScores 0.01*** 0.03* 0.00 0.01
(0.00) (0.02) (0.02) (0.01)

Other controls X X X X
Observations 50,257 4,502 10,880 8,120
Adjusted R-squared 0.206 0.224 0.204 0.171

Panel B: Analysts’ forecast accuracy after the revision

ManFc 0.07*** 0.11 0.06 0.05
(0.02) (0.08) (0.04) (0.05)

ManFcRan 1.71*** 1.26*** 2.35*** 0.91**
(0.16) (0.45) (0.41) (0.39)

ManFcRanLow -2.37** 5.87 -14.15 -0.72
(1.09) (10.90) (8.71) (5.31)

TotScore -0.01*** -0.01 -0.01* -0.05***
(0.00) (0.01) (0.01) (0.01)

sdScores -0.08 -2.14*** 0.58 -0.95***
(0.07) (0.40) (0.48) (0.27)

Other controls X X X X
Observations 50,257 4,502 10,880 8,120
Pseudo R-squared 0.042 0.051 0.049 0.055

Note: AnAdj - the analyst’s adjustment of her forecast, where the adjustment is equal to the difference between the new
forecast and the old one; AnAccRev - the dummy variable which equals 1 if the absolute value of the analyst’s i forecast
for firm j after revision is larger than before revision and 0 otherwise; ManFc - the managers’ earnings forecast of firm j in
quarter t; ManFcRan - the managers’ earnings forecast range and equals the difference between the upper and the lower
bound managers forecast if both estimates are available and zero otherwise; ManFcRanLow - the difference between the
forecast and the lower bound of the managers’ forecast if only the forecast and the lower bound of forecast are available
and zero otherwise; TotScore and sdScores - the sum and standard deviation of the scores of the key financial ratios.
Definition of other control variables is provided in Appendix 1.A. Robust standard errors are provided in parentheses. ***
p<0.01, ** p<0.05, * p<0.1
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in the managers’ earnings estimates, the analysts update their forecasts upwards for

the whole sample and all signal groups. The estimates were not found to differ across

signal groups. The increase in the managers’ forecasts was also found to be positive and

significant in the probability model of greater analysts’ forecast errors after revision only

for the whole sample and the estimates were found insignificant for the all signal groups.

When the managers provide upper and lower bounds of their forecasts, the analysts

tend to revise their forecast downwards for the whole sample and the high signal group,

with an increase in the managers’ forecasts range. The increase in the range of the

managers’ forecasts also leads to the higher probability of the larger absolute forecast

error after the revision for the whole sample and all signal groups and I cannot reject

the hypothesis that the estimates are equal across all groups at the 5% significance level.

Given the findings from section 1.6.2 showing that managers’ forecasts may depend on

the signal groups, the equality of the estimates across signal group may suggest that the

analysts fail to adjust for the managers’ possible forecast biases.

If the managers release a point estimate and only a lower bound for their forecast of

future earnings per share, this range between the point estimate and the lower bound

affects the analysts’ forecast revisions only for the whole sample. The probability of higher

absolute forecast error after the revision decreases with the increase in distance between

the managers’ forecast and its low bound, but only for the whole sample.

The increase in the total score leads to the downward revisions of analysts’ forecasts

for the low and mixed signal groups and upwards revisions for the high signal group. The

probability of having the larger forecast error after revision decreases in the total signal

score for the whole sample, and the mixed and high signal groups.

The increase in the heterogeneity of the signals leads analysts to revise upwards for the

whole sample and the low signal group. The revisions for the mixed signal group are not

affected by an increase in the heterogeneity in signals. As for the precision of the analysts’

forecasts after revision, the probability of having higher forecast errors decreases in the

heterogeneity in signals for the whole sample, and for the low and high signal groups, but

it is not affected for the mixed signal group.

1.7 Conclusion

This paper provided evidence of analysts’ forecast biases which are driven by the financial

indicators of the firm. While previous research tries to explain the analysts’ forecast errors,
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I show that the information contained in earnings is perceived differently across firms.

The result comes from the fact that when predicting future earnings of the firms, analysts

use a set of indicators or information signals. When they obtain signals of the same sign

(when all indicators predict prosperous or poor performance of the firm), one would expect

that due to lower uncertainty about the firms’ future performance, the analysts’ forecast

errors should be smaller. On the contrary, there is evidence that the analysts actually

over- or underreact when creating their forecasts for these types of firms.

Overall, the analysis yields the following findings. Firstly, the paper argues that the

distributions of the analysts’ forecast errors are not equal across firms with only low, only

high, and mixed (with both, low and high) signals.

The paper also analyzes the impact of the analysts’ forecast accuracy biases on

managers’ incentives to release forecasts and manipulate the market. There is evidence

that the managers’ earnings over- or underestimation is driven by variables including

the total signal score, standard deviation of the signals, standard errors of the analysts’

forecast errors, analysts’ bias and the predicted part of the analysts’ forecast errors. The

managers’ forecasts, in their turn, have an impact on the analysts who may update their

forecasts in response to them. While there is no evidence of differences in the effect of

managers’ point estimates of earnings on the analysts’ adjusting their forecast across

groups, there is evidence of the different responses of analysts to the earnings uncertainty

sent by managers in the form of forecasting lower and upper bounds for future earnings.

The managers-analysts responses to each other’s forecast releases imply that there may

be gaming on disclosure.

Overall, the paper indicates that the analysts’ forecast biases depend on the signal

group. The managers of the firms try to exploit these biases by releasing their own

forecasts and tending to drive the analysts’ forecasts. The analysts sometimes fail to

realize the managers’ biased forecasts and take into account these biases when revising

their forecasts.
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1.A Models and Variables Used

Model 1: Signal informativeness

EPSj,t = α0 + α1EPSj,t−1 + α2SPMj,t−1 + α3TURNAj,t−1 + α4BV Aj,t−1 + α5BMj,t−1 +

+ α6Lj,t−1 + α7DEj,t−1 + α8TOTACRj,t−1 + α9CAPEXPj,t−1 + α10SIZE + (1.6)

+ α11ETRj,t−1 + α12CCRj,t−1 + α13INTDj,t−1 + α14AGj,t−1 + α15CSIj,t−1 +

+ α16DAj,t−1 + α17MSIj,t−1 + ςj,t

where EPSj,t (EPSj,t−1) - the earnings per share excluding extraordinary items of firm

j in quarter t (t − 1); SPMj,t−1 - the sales profit margin and it is equal to operating

income after depreciation to sales; TURNAj,t−1 - the asset turnover calculated as current

sales divided by total assets; BV Aj,t−1 - the book value-to-assets ratio, calculated as the

difference between total assets and total liabilities, scaled by total assets; BMj,t−1 - the

market-to-book value, which equals to book value divided by the product of the number

of shares outstanding and the last available stock price for the appropriate quarter; Lj,t−1

- the leverage ratio calculated as the sum of long-term debt and debt in current liabilities

to total assets; DEj,t−1 - the dividends-to-earnings ratio, which is equal to dividends

divided by earnings; TOTACRj,t−1 - the total accruals, calculated as the change in the

total assets minus the change in total liabilities and minus the change in the cash and

short-term investments scaled by total assets; CAPEXPj,t−1 - the capital expenditures

calculated as the ratio of yearly capital expenditures to total assets; SIZEj,t−1 - the

natural logarithm of total assets; ETRj,t−1 - the effective tax rate, calculated as one year

moving average income taxes to pretax income ratio; CCRj,t−1 - the correlation between

costs and revenues over the last four quarters; INTDj,t−1 - the interests to debt ratio

calculated as the ratio of interests to the sum of long-term debt and debt in current

liabilities; AGj,t−1 - the assets growth, which is equal to logarithm of total assets in the

current quarter to total assets in the previous quarter; CSIj,t−1 - the common stock

interest and is equal to income before extraordinary items available to common stock

holders divided by common stockholder equity; DAj,t−1 - the depreciation-to-assets ratio

and is equal to the depreciation scaled by total assets; and MSIj,t−1 - the minority stock

interest, calculated as the ratio of noncontrolling interests to common stockholder equity;

and ςj,t - the error term.
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Model 2: Analysts’ inaccuracy

FcErri,j,t (AbsFcErri,j,t) = β0 + β1FcErri,j,t−1(AbsFcErri,j,t−1) + β2TotScorej,t + β3sdScorej,t +

+ β4MomEarnj,t + β5RevEarnj,t + β6FcAgei,j,t + β7FcFri,j,t +

+ β8NumFirmi,t + β9FundSentt + β10ResSentt + (1.7)

+

4∑
k=2

βk+9qk + ηi,j,t

where FcErri,j,t (FcErri,j,t−1) and AbsFcErri,j,t (AbsFcErri,j,t−1) - the forecast error of

analyst i for firm j in quarter t (t − 1) and its absolute value, respectively, multiplied

by 100, where the forecast error is calculated as the difference between the actual and

forecasted level of earnings per share (EPS) scaled by the mean stock price over 10 trading

days before the forecast announcement by analyst i (i.e. the economic interpretation of

the dependent variable is the forecast error per 1 cent); TotScorej,t and sdScoresj,t - the

sum and standard deviation of the scores of the key financial ratios; MomEarni,t - the

momentum of the previous period earnings change, which is equal to the change in EPS

between t−2 and t−1 if the change is of the same sign as the change in the current period

(i.e. between time t− 1 and t) and 0 otherwise; RevEarni,t - the reversal of the previous

period earnings change, which is equal to the change in EPS between t− 2 and t− 1 if

the change is of the opposite sign as the change in the current period (i.e. between time

t− 1 and t) and 0 otherwise; FcAgei,j,t - the forecast age or the time interval between the

forecast release date of analyst i for firm j and the earnings announcement date; FcFri,j,t
- the forecast frequency or the number of one-quarter ahead forecasts analyst i released

for firm j in the previous calendar year; NumFirmi,j,t - the number of firms followed by

analyst i in the current quarter in the same 2-digit SIC industry as firm j; FundSentt
and ResSentt - the fundamental and residual parts of consumer sentiment and it is

constructed as the fitted value from the regression of consumer sentiment on GDP growth,

consumption growth, labor income growth, default spread (calculated as a difference

between Baa and Aaa rated corporate bonds), term spread (calculated as a difference

between yields of 10 year government bonds and one month Treasury bills), yields on the

three month Treasury bills, consumer price index change, CRSP value-weighted index

dividend yield; and qi,∀i = 2, 3, 4 - the quarter dummy, which is equal to 1 if quarter

equals i and 0 otherwise; and ηi,j,t - the error term.
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Model 3: Managers’ guidance

ManFcErrj,t (AbsManFcErrj,t) = β0 + β1TotScorej,t + β2sdScorej,t + β3AnFcErrPredj,t +

+ β4AnBiasj,t + β5sdAnFcj,t + β6FundSentt + β7ResSentt +

+ β8Retj,t + β9sdRetj,t + β10AbnV olj,t + β11BASprj,t + (1.8)

+ β12sdPrcj,t + β13InsTransj,t + β14dLossLagj,t +

+ β15dBadNews+ β16dBadNews ∗Newsj,t + β17dLossFcj,t +

+ β18FcHorj,t + β19IndConcj,t + β20Sizej,t + ωj,t

where ManFcErrj,t and AbsManFcErrj,t - the managers’ forecast error and its absolute

value, where forecast error defined as the difference between the actual and the forecasted

level, scaled by the mean stock price over 10 trading days prior to the managers’ forecast

announcement date and multiplied by 100; TotScorej,t and sdScoresj,t - the sum and

standard deviation of the scores of the key financial ratios; AnFcErrPredj,t and AnBiasj,t
- the explained part and the mean of residual part of the analysts’ forecast precision model

from equation (1.7); sdAnFcj,t - the standard deviation of the analysts’ forecasts for firm j

in quarter t known to the market on the day of the managers’ forecast release; FundSentt
and ResSentt - the fundamental and residual parts of consumer sentiment and it is

constructed as the fitted value from the regression of consumer sentiment on GDP growth,

consumption growth, labor income growth, default spread (calculated as a difference

between Baa and Aaa rated corporate bonds), term spread (calculated as a difference

between yields of 10 year government bonds and one month Treasury bills), yields on the

three month Treasury bills, consumer price index change, CRSP value-weighted index

dividend yield; Rj,t and sdRj,t - the returns and the standard deviation of the returns over

10 trading days on firm’s j stock in quarter t prior to the managers’ forecast announcement

date; AbnV olj,t - the mean of daily abnormal trading volume for firm j in quarter t over

10 trading days prior to the managers’ forecast announcement, where the daily abnormal

trading volume was calculated as the ratio of difference between daily stock trading volume

minus the mean daily trading volume over the previous year to the mean daily trading

volume over the previous year; BASj,t - the mean bid-ask spread for the stock of firm j in

quarter t over a 10 trading days prior to the managers’ forecast announcement; sdPrcj,t
- the standard deviation of stock price of firm j over half a year prior to the managers’

forecast announcement in quarter t; InsTransj,t - the value of insiders’ transactions of

firm j’s securities over 10 trading days prior to the managers’ forecast announcement date

46



which is equal to the sum of purchases minus sales; dLossLagj,t - the dummy variable

which is equal to 1, if firm j had negative earnings in the previous quarter, and 0 otherwise;

dLossFcj,t - the dummy variable of a negative forecast which is equal to 1, if the managers’

forecast of firm j is negative, and 0 otherwise; dBadNews - dummy variable of “bad”

news, which equals 1 if the managers’ forecast is below the analysts’ forecast mean and

zero otherwise; dBadNews ∗ Newsj,t - the interaction term of the dummy variable of

“bad” news, which equals 1 if the managers’ forecast is below the analysts’ forecast mean

and zero otherwise, and the managers’ forecast news, defined as the difference between

the analysts’ mean forecast and managers’ estimate news for firm j in quarter t; FcHorj,t
- the time interval between the managers’ forecast release day and the fiscal quarter end

for firm j in quarter t; IndConsj,t - the industry concentration of sales, measured by the

herfindahl index for firm j in quarter t; and Sizej,t - the size of firm j in quarter t, which

is equal to a natural logarithm of total assets; and ωj,t - the error term.

Model 4 and 5: Analysts’ adjustment and accuracy after revision

AnAdji,j,t (AnAccRevi,j,t) = β0 + β1ManFcj,t + β2ManFcRanj,t + β3ManFcRanLowj,t +

+ β4TotScorej,t + β5sdScj,t + β6sdAnFcj,t + β7FundSentt +

+ β8ResSentt + β9Retj,t + β10sdRetj,t + β11AbnV olj,t +

+ β12BASprj,t + β13sdPrcj,t + β14InsTransj,t + (1.9)

+ β15dLossFcj,t + β16dBadNewsj,t + β17dBadNews ∗Newsj,t +

+ β17FcHorj,t + β19IndConcj,t + β20Sizej,t + β21FcAgei,j,t +

+ β22FcFri,j,t + β23GenExpi,j,t + β24NumFirmi,t + εi,j,t

where AnAdji,j,t - the forecast adjustment of analyst i for firm j in quarter t, where the

adjustment is equal to the difference between the old and new forecasts; AnAccRevi,j,t - the

dummy variable, which equals 1 if the absolute value of the analyst’s i forecast for firm j

after revision is larger than that before revision and 0 otherwise; ManFcj,t - the managers’

earnings forecast of firm j in quarter t; ManFcRanj,t - the managers’ earnings forecast

range and equals the difference between the upper and the lower bound managers’ forecast

if both estimates are available and zero otherwise; ManFcRanLowj,t - the difference

between the forecast and the lower bound of the managers’ forecast if only the forecast

and the lower bound of the forecast are available and zero otherwise; TotScorej,t and

sdScoresj,t - the sum and standard deviation of the scores of the key financial ratios;

47



FundSentt and ResSentt - the fundamental and residual parts of consumer sentiment

and it is constructed as the fitted value from the regression of consumer sentiment on

GDP growth, consumption growth, labor income growth, default spread (calculated as

a difference between Baa and Aaa rated corporate bonds), term spread (calculated as a

difference between yields of 10 year government bonds and one month Treasury bills),

yields on the three month Treasury bills, consumer price index change, CRSP value-

weighted index dividend yield; Rj,t and sdRj,t - the returns and the standard deviation

of the returns over 10 trading days on firm’s j stock in quarter t prior to the analysts’

forecast announcement date; AbnV olj,t - the mean of daily abnormal trading volume for

firm j in quarter t over 10 trading days prior to the analysts’ forecast announcement,

where the daily abnormal trading volume was calculated as the ratio of difference between

daily stock trading volume minus the mean daily trading volume over the previous year to

the mean daily trading volume over the previous year; BASj,t - the mean bid-ask spread

for the stock of firm j in quarter t over 10 trading days prior to the analysts’ forecast

announcement; InsTransj,t - the value of insiders’ transactions of firm j’s securities over

10 trading days prior to the managers’ forecast announcement date which is equal to the

sum of purchases minus sales; dLossFcj,t - the dummy variable of a negative forecast which

is equal to 1, if the managers’ forecast of firm j is negative, and 0 otherwise; dBadNews -

the dummy variable of “bad” news, which equals 1 if the managers’ forecast is below the

analysts’ forecast mean and zero otherwise; dBadNews ∗Newsj,t - the interaction term

of the dummy variable of “bad” news and forecast news for firm j in quarter t; FcHorj,t -

the time interval between the managers’ forecast release day and the fiscal quarter end

for firm j in quarter t; IndConsj,t - the industry concentration of sales, measured by

the herfindahl index for firm j in quarter t; and Sizej,t - the size of firm j in quarter t

which is equal to the natural logarithm of total assets; FcAgei,j,t - the forecast age or the

time interval between the forecast release date of analyst i for firm j and the earnings

announcement date; FcFri,j,t - the forecast frequency or the number of one-quarter ahead

forecasts analyst i released for firm j in the previous calendar year; GenExpi,t - the

number of quarters for which analyst i released at least one quarterly forecast prior to the

current quarter; NumFirmi,j,t - the number of firms followed by analyst i in the current

quarter in the same 2-digit SIC industry as firm j; and εi,j,t - the error term.
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1.B Signal Informativeness

Table 1.5: Signal informativeness

VARIABLES EPS Variable description

EPS_lag 0.40***
EPS - earnings per share excluding extraordinary items

(0.00)
SPM 0.01***

SPM - the sales profit margin is equal to operating income after depreciation to sales
(0.00)

TURNA 0.10***
TURNA - the asset turnover is calculated as current sales divided by total assets

(0.01)
BV A -0.09*** BV A - the book value-to-assets ratio, calculated as difference between total assets and total

liabilities, scaled by total assets(0.01)
BM -21.81*** BM - the market-to-book value equals to book value divided by the product of the number

of shares outstanding and the last available stock price for the appropriate quarter(0.76)
L -0.29*** L - the leverage ratio calculated as the sum of long-term debt and debt in current liabilities

to total assets(0.01)
DE 0.01***

DE - the dividends-to-earnings ratio equals dividends divided by earnings
(0.00)

TOTACR -0.49*** TOTACR - the total accruals, calculated as the change in the total assets minus the change
in total liabilities and minus the change in the yearly average cash scaled by total assets(0.02)

CAPEXP 0.09*** CAPEXP - the capital expenditures are the ratio of yearly capital expenditures to total
assets;(0.03)

SIZE 0.05***
SIZE - the natural logarithm of total assets

(0.00)
ETR -0.02***

ETR - the effective tax rate is calculated as income taxes to pretax income ratio
(0.00)

CCR 0.02***
CCR - the correlation between costs and sales over the last four quarters;

(0.00)
INTD 0.00*** INTD - the interests to debt ratio is calculated as the ratio of interests to the sum of

long-term debt and debt in current liabilities(0.00)
AG 0.19*** AG - the assets growth is equal to logarithm of total assets in the current quarter to total

assets in the previous quarter(0.01)
CSI 0.00*** CSI - the common stock interest equals to income before extraordinary items available to

common stock holders to common stock capital(0.00)
DA -2.10***

DA - the depreciation-to-assets ratio is the depreciation scaled by total assets
(0.14)

MSI -0.00*** MSI - the minority stock interest calculated as the ratio of noncontrolling interests to
common stockholder equity(0.00)

Constant -0.09***
(0.01)

Observations 226,736
Adjusted R-squared 0.221

Robust standard errors are provided in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Chapter 2
Cross-industry Abnormal Returns and Trading
Volume upon Earnings Announcements
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Abstract

This chapter investigates how trading activity responds to industry-related earnings

announcements and whether this trading activity is informative. While previous research

concentrates on the earnings surprise as the main information signal, I find that the

abnormal trading volume of the subsequent announcers can explain the abnormal returns

on the day of the first and subsequent own announcement and in the post announcement

periods. I also show that trading activity upon the first announcement is not driven

by the first announcer’s earnings surprise, but rather by the history of the earnings

surprises of both the first and subsequent announcers. Moreover, the first and subsequent

announcers’ earnings surprises history was found to have the predictive power of the

subsequent announcer’s own earnings surprise. I also provide some evidence that upon the

first announcement the market tries to incorporate the subsequent announcer’s earnings

surprise predictability, but fails to do so fully.
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2.1 Introduction

Extensive research has shown that the volume of stock trading can serve as a useful

information signal about stock performance1. Changes in trading activity, in their turn,

may be induced by information arrivals (Andersen, 1996; Barber & Odean, 2008; Busse

& Green, 2002; Kim & Verrecchia, 1991; etc.), since the new information should be

incorporated in the investors’ decision making (Bamber, Barron, & Stober, 1997). Keeping

this in mind, one might think that on the day of the information arrivals there are at

least two information signals. The first is the new information itself and the second is the

market reaction to this information signal, reflected in the market’s adjustment in trading

activity upon observing the new piece of information.

Information signals can arrive to the market in different forms: macroeconomic news,

firms’ announcements, appearance in the media, etc. Among the particular information

signals are the earnings announcements of industry-related firms. Although there are many

studies of the responsiveness of trading volume to the former type of information signals,

there is a gap in the literature on the impact of intra-industry information transfers on

trading activity within the industry. While previous research on intra-industry transfers

concentrates mainly on the impact of announcements of the industry-related firms2, I

argue that although these announcements are informative, the market perception of them

will be reflected in trading volume and, thus, the latter should be informative as well.

Therefore, the aim of this paper is to fill this gap and analyze the informativeness of

trading volume on the day of the industry-related earnings announcements. In particular,

I concentrate on the impact of the first earnings announcements in the industry on the

subsequent announcers.

The reaction to the earnings announcements may also depend on market expectations

about the announcing and non-announcing firms. Thus, for example, if the first announcer

is a firm which persistently beats the analysts’ forecasts, a new earnings surprise may have

a different impact on the market compared to that of a firm which did not surprise the

market in the past so much. The persistency in the positive surprises may indicate that

1The literature on the predictability of stock returns with trading volume, among others, include such
studies as Gallant, Rossi, and Tauchen (1992), Campbell, Grossman, and Wang (1992), Conrad, Hameed,
and Niden (1994), Lee and Swaminathan (2000), Connolly and Stivers (2003).

2Besides earnings announcements, the prior studies on the intra-industry transfer include managers’
(Baginski, 1987; Han, Wild, & Ramesh, 1989; Pyo & Lustgarten, 1990) and analysts’ (Ramnath, 2002)
earnings forecasts, bankruptcy (Lang & Stulz, 1992) and equity offerings announcements (Szewczyk,
1992).
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the firm is doing well, or there is something unique driving the firm’s revenues and overall

performance which is consistently overlooked by the analysts. The irregularity in the

earnings surprises may, on the contrary, result from market conditions which are favorable

for the firm or earnings management by managers. While the earnings surprise in the new

reporting quarter of the firm with persistent surprises might be perceived by the market as

less surprising or “normal”, the positive earnings surprise of a firm with irregular surprises

may be more unexpected. The same logic can be applied to the subsequent announcer:

the implication of the first announcer’s earnings surprise may depend on how often and

by how much the subsequent announcer beat the analysts’ forecast in the past.

This paper differs from the papers on the informativeness of the trading volume and

intra-industry information transfers in several respects. Contrary to most of previous

research, I do not concentrate solely on the analysis of the impact of the industry-related

firms’ earnings announcements on the non-announcing firms’ stock performance, but rather

on the study of the trading activity in response to such announcements and whether this

trading activity is informative. Secondly, I investigate whether the stock performance and

trading activity of non-announcing firms upon the first announcement is also dependent,

besides the current quarter first earnings surprises, on the history of earnings surprises of

both the first and subsequent announcers.

Consistent with previous research, I find that the first announcer’s earnings surprise

can explain the non-announcing firms’ stock performance upon such announcements,

but I contribute to the literature by showing that the trading volume upon the first

announcement in the industry is aslo informative. Secondly, I also find that the history of

the earnings surprises of both the first and subsequent announcers can explain the stock

performance and trading activity upon the first announcement. Thirdly, I find evidence

that not only the the first announcer’s earnings surprise, but also the earnings surprises

history of both the first and subsequent announcers can predict the latter’s earnings

surprise. Fourthly, the results show that the market does not fully realize the subsequent

announcer’s earnings surprise predictability, which may be interpreted as some form of

market inefficiency. Fifthly, the findings also suggest that the trading volume has a higher

persistency upon the first announcement than upon subsequent announcement.

The chapter is organized as follows. The second section is devoted to the discussion

of existing research on the topic of this study. In the third section, the methodology is

introduced. The fourth section deals with the data and sample selection. In the fifth

section I present the results. The final, sixth, section concludes.
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2.2 Related Literature

Trading volume is not only informative about the future performance of stocks, but it

can also be used for purifying the information contained in other information signals. For

example, Schneider (2009) develops a model in which investors learn from private signals,

market prices and aggregate trading volume. The author shows that besides being the

information signal by itself, trading volume can help investors to evaluate the precision of

other information signals, such as private information and asset prices.

The hypothesis of trading volume being an extra information signal is also supported by

the findings of Gervais, Kaniel, and Mingelgrin (2001) showing that the high trading volume

return premium cannot be explained by the firm’s returns autocorrelation, announcements,

market risk, or liquidity. The authors explain the high trading volume return premium

by the higher visibility of the stock and subsequent demand and price changes, while on

the contrary, the lower trading volume can be explained by higher attention distraction

(Hirshleifer, Lim, & Teoh, 2009).

In its turn, the visibility of the stocks and demand for them can be affected by industry-

related news through at least two channels. Firstly, the literature on the intra-industry

information transfer has shown that industry-related firm’s earnings announcements may

provide valuable information about its peers in the industry (Clinch & Sinclair, 1987;

Firth, 1976; Foster, 1981; Freeman & Tse, 1992; Han & Wild, 1990; Thomas & Zhang,

2008)3. If the industry-related firm’s announcement is perceived by the market as news for

its peers, the trading volume of the non-announcing firms in the industry should respond

to the first announcement in the industry. This effect can be considered to be direct - the

market reacts to the new piece of the information relevant to the the non-announcing

firm’s future performance. The second, indirect, effect of the first announcer’s earnings

releases on trading activity in the non-announcing firm’s stock will arise as the result of

changes in the announcing firm’s stock trading activity.

The higher trading volume upon the first announcement can result from the heterogene-

ity in responses to first announcements. As shown by Kandel and Pearson (1995), investors

do not incorporate market information rationally and “agree to disagree”. Li (2007) comes

to the same conclusion, showing that upon observing the identical information signal all

investors use different models of updating their beliefs. In both models, disagreement

3Besides earnings announcements, the prior studies on the intra-industry transfer include managers’
(Baginski, 1987; Han et al., 1989; Pyo & Lustgarten, 1990) and analysts’ (Ramnath, 2002) earnings
forecasts, bankruptcy (Lang & Stulz, 1992) and equity offerings announcements (Szewczyk (1992)).
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about the implications of the new piece of information may lead to higher dispersion in

expectations of the announcing and non-announcing firm’s performance. Consequently,

due to the increased dispersion in beliefs there will be more investors willing to buy as

well as those willing to sell4, but these changes in demand and supply for the stock may

drive the stock returns either up or down.

The other explanations of the increase in trading volume can be previous disagreement

before the news arrival. For example, Karpoff (1986) shows that abnormal trading volume

can arise even when investors interpret an information signal identically, but had divergent

expectations prior to the arrival of the news. This heterogeneity prior to the news

arrival and identical interpretation of the new information signal should prompt corrective

measures by investors and the changes in the demand for the stock will result in price

changes.

Previous research findings suggest that regardless of whether the increased trading

volume results from disagreement about the news consistent with Kandel and Pearson

(1995) or identical interpretation of the news with previous disagreement as in the Karpoff’s

(1986) model, trading volume can signal the direction of the stock performance. In the

former case, the disagreement may lead to the failure of meeting expectations of some of

the investors and subsequently open profitable opportunities due to the corrective actions

of the market. The latter case is even more straightforward since it directly implies the

corrective market actions due to the previous sub-optimal incorporation of the available

information. One example of such expectations prior to the arrival of the news could be

short-selling, which has been shown to signal informative trading (Christophe, Ferri, &

Angel, 2004).

The increase in trading activity can also be induced by the presence of heterogeneous

agents leading to heterogeneous responses to the same information signal. This hypothesis

is motivated by the findings of Barber and Odean (2008) who show that individual investors

are more likely to buy on high attention days (on days of new information arrivals) while

institutional investors are more likely to sell on those days. In our context, this may

imply that on the first announcement day in the industry the less sophisticated investors

(usually believed to be individual investors) may be more inclined to buy the stock of

announcing firms, and more sophisticated investors (usually believed to be institutional

4Other research on the increase in trading volume due to the increase in the heterogeneity in beliefs
include Shalen (1993), Barron (1995), Bessembinder, Chan, and Seguin (1996), Bamber et al. (1997),
Goetzmann and Massa (2005), Buraschi and Jiltsov (2006), etc.
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investors) may be more inclined to sell those stocks. This trading activity upon the first

announcement might be reinforced by the presence of informed and uninformed traders,

since Collin-Dufresne and Fos (2015) show that informed investors tend to trade more

actively when uninformed trading activity is quite high. As a result one might expect an

increase in the trading volume of the first announcer.

Moreover, one can expect the opposite direction in trading with the non-announcing

firms stocks. Ramnath (2002) shows that the underreaction to the first announcer earnings

reports of such sophisticated market players as analysts is smaller compared to the market

underreaction. Due to this smaller underreaction more sophisticated investors may put

higher weights on the non-announcing firms, the earnings surprises for which are not

known, but the beliefs about which will be updated based on the first announcer’s earnings

releases, and, on the contrary, put lower weights on the stocks of the announcing firms.

Such trading practices can be profitable since Foster, Olsen, and Shevlin (1984) emphasize

that constructing a portfolio based on the foreknowledge of earnings surprises is much

more profitable than the one constructed on the known earnings surprises. Based on

this reasoning, it might be expected that individual investors are more likely to sell and

more sophisticated investors more likely to buy the stock of non-announcing firms. This

argument is consistent with the findings of Christophe et al. (2004), who show that short

selling reveals the informative trading in the pre-announcement period. Moreover, Diether,

Lee, and Werner (2009) show that short-sellers can correctly predict the abnormal negative

returns.

Summarizing all the arguments above, the trading volume upon the announcement may

contain some extra information besides the announcer’s earnings surprise and reflect either

heterogeneous beliefs, heterogeneous beliefs updating, and/or the presence of heterogeneous

agents, all of which may have an impact on the asset prices. This suggests that upon the

first announcement in the industry the market receives at least two information signals

concerning the future performance of the subsequent announcer: the earnings surprise

of the first announcer and the abnormal trading volume of the first and subsequent

announcers upon the first announcement. While the announcing firm’s earnings surprise

may form the investors’ expectations about the non-announcing firm’s earnings surprise,

the trading volume of both an announcing and non-announcing firm may reflect changes

in the demand for the non-announcing firms and consequently impact the stock prices,

and thus serve as an additional informational signal about the non-announcing firm’s

stock performance.
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The history of the earnings surprises is also important in my study, since the previous

studies have shown that the market rewards companies with persistent positive earnings

surprises (Barth, Elliott, & Finn, 1999; Bartov, Givoly, & Hayn, 2002; Kasznik &McNichols,

2002). Moreover, Bartov et al. (2002) also show that the premium for beating the analysts’

forecasts in the current quarter can be used as a leading indicator of future performance.

On the other hand, Lopez and Rees (2002) show that the market partially discounts the

systemic component of the persistent positive earnings surprises since the persistency

can be explained to some degree by the managers’ efforts aimed at meeting analysts’

forecasts (Brown & Caylor, 2005; Burgstahler & Dichev, 1997; Burgstahler & Eames, 2006;

Degeorge, Patel, & Zeckhauser, 1999). Even in the absence of earnings management, the

persistency in the earnings surprises may be driven by the inability of the analysts to

capture some important permanent components of the earnings (Dichev & Tang, 2009),

while the irregularity of the earnings surprises may result from the temporal factors or

favorable market movements.

In addition, regardless of whether the stream of positive earnings surprises results

from the permanent earnings surprises driver omitted by the analysts and/or earnings

management by managers, a stream of positive earnings surprises may build market

representativeness bias (Alti & Tetlock, 2014; Barberis, Shleifer, & Vishny, 1998; Brav

& Heaton, 2002; Gennaioli, Shleifer, & Vishny, 2015; Kahneman & Tversky, 1972; etc.),

when the investors tend to extrapolate a series they were observing for a while. As the

result of this representativeness bias the market may treat the firms with a long and

persistent history of positive earnings surprises differently from those firms which show

positive earnings surprises once in a while. For this reason I expect, firstly, that the history

of the first announcer’s earnings surprises may matter in how the market responds to its

announcement, since it may help to filter out the permanent component of the earnings

surprises from the temporal one, each of which might have a different impact on updating

beliefs about the subsequent announcers. At the same time, the history of the subsequent

announcer’s earnings surprises may also be important, since even a huge first announcer’s

earnings surprise and long sequence of positive earnings surprises may not be very relevant

for the subsequent announcer with a long history of negative earnings surprises.
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Figure 2.1: Timeline of the events
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2.3 Methodology and Hypotheses

The purpose of this chapter is to analyze the impact of the first earnings announcements

on trading activity and stock responses to it. For these purposes I am going to consider

two event windows as depicted in Figure 2.1. The first event window is represented by the

time interval around the first announcement date in the industry for a particular fiscal

quarter. The second is concentrated around the subsequent announcer’s own reporting

date for that particular fiscal quarter. In both of the event windows, I consider the

different time intervals in order to study the persistency of the impact of the variable of

interest over time. Thus the following time intervals are analyzed: days 0-1 (where day=0

is the first announcement or own subsequent announcement date respectively), days 2-5,

days 6-10, and days 11-20 upon the first or own subsequent earnings reports respectively5.

Using these two event windows allows me to more deeply understand the informative-

ness of the trading volume. Previous research has shown that the first announcements

5Although in event studies usually [-n,n] time windows with time 0 being an event date are analyzed,
I consciously consider only the post announcement period, starting with the announcement day. This is
motivated by the fact that I want to analyze the trading activity and stock responses to the information
known to the market. While there might be some information leakage or market anticipation about
the earnings announcements several days before the announcement day, the purpose of this study is to
analyze the informativeness of the trading volume resulting from the actual earnings releases.
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are informative about the non-announcing firms’ stock performance. While the first

announcer’s earnings surprise is valuable for predicting the future of the subsequent

announcer, it is rather a noisy signal about the subsequent announcer’s performance and

there is still some uncertainty associated with this information signal. Nevertheless, the

informativeness of the first announcement should be reflected in the trading activity and

thus the trading volume on the day of the first announcement in the industry is expected

to serve as a purifying signal. If the trading volume is not informative, or the trading

adjustments are totally optimal, trading volume should be unable to explain the returns

of the non-announcing firms. On the contrary, if the trading volume can predict the stock

performance it may signal that there is some irrationality reflected in the trading activity

or some extra information contained in it. The latter statement is even stronger for the

firm’s own subsequent announcements, since in this case its own earnings surprises have a

clear implication for the subsequent announcer’s performance. The ability of the abnormal

trading volume to explain the stock performance upon own announcements will provide

even stronger evidence that the abnormal trading volume is informative, since it may

reveal the firm specific rather than fundamental financial information (Christophe et al.,

2004). Based on these arguments I state the next two hypotheses.

Hypothesis 1. The abnormal trading volume of the subsequent announcing firms upon

the first announcement in the industry should be informative about their stock performance

around the first announcements.

Hypothesis 2. The abnormal trading volume of the subsequent announcing firms upon

their own announcements may be informative about their stock performance around their

own announcements.

Moreover, the first announcer’s trading volume is expected to be informative about its

peers in the industry, i.e. the subsequent announcers. Upon observing the first announcer’s

earnings report, the investors update their beliefs and adjust their positions accordingly.

These adjustments will be reflected in the trading volume of the first announcer. Consistent

with Barber and Odean (2008) and Christophe et al. (2004), I expect that less sophisticated

investors may start buying the stocks of the announcing firm, while more sophisticated

ones may start selling these stocks and buying the stocks of non-announcing firms. These

considerations lead me to the following hypothesis.

Hypothesis 3. The first announcer’s abnormal trading volume upon its own announce-

ment is informative about subsequent announcing firms stock performance and trading

activity around the first announcements.
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As was previously found in the literature, the market reacts differently to the same

information depending on the history of analysts’ forecasts being met. Therefore I also

hypothesize that the history of earnings surprises should explain the stock performance

and abnormal trading volume. A sequence of positive earnings surprises may serve as

a confirmation signal about the stock performance and thus may trigger the trading

activity. The other explanation for the history of the earnings surprises as an explanatory

factor for the trading activity upon the firm’s own announcement is that the firm which

constantly beats market expectations at some point should attract market attention, which

should lead to higher trading activity in this stock. Therefore, I also hypothesize that the

earnings surprises history of both the first and subsequent announcer may play a role in the

subsequent announcer’s stock, and trading activity responses to the first earnings report

in the industry. Based on similar logic, the subsequent announcer’s earnings surprises

history is expected to be able to explain the stock performance and trading activity upon

the firm’s own announcements, which motivates me to formulate the following hypothesis.

Hypothesis 4. The earnings surprises history of both the first and subsequent announcers

can explain the subsequent announcer’s stock performance and trading activity upon the

first announcement, and the earnings surprises history of the subsequent announcers can

explain their stock and trading activity upon their own announcements.

One could argue that the significance of the abnormal trading volume upon the first

announcement is solely determined by the ability of the market to foresee the subsequent

announcers’ earnings surprises. I also expect that at least some of the market participants

will try, upon observing the first announcements, to build their trading strategies based

on the updated information set, which will be reflected in the trading volume. Since

trading based on foreknowledge of the earnings surprise is more profitable than trading

based on the publicly available information, I expect that more informed traders will

take the appropriate trading positions upon the first announcement, while taking the

offsetting positions upon their own subsequent announcements. Thus, I expect that the

abnormal trading volume of both the first and subsequent announcers upon the first

announcement should explain the subsequent announcer’s abnormal trading volume upon

its own announcement.

On the other hand, there is much evidence that the markets are not fully rational.

I hypothesize that the market tries to incorporate the new information revealed by the

first announcements, but fails to incorporate it fully. Therefore, although the trading

activity on the first announcement is driven by the market expectations about the future
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performance of the subsequent announcers, the abnormal trading volume still has some

incremental power in explaining the stock performance. I formalize this argument in

hypotheses 5 and 6.

Hypothesis 5. The market cannot fully incorporate the implication of the first an-

nouncements and the subsequent announcer’s abnormal trading volume have incremental

power in explaining the subsequent announcer’s stock performance.

Hypothesis 6. The subsequent announcer’s abnormal trading volume upon the first

announcement is driven by the market expectations updated upon observing the first

announcement.

If the market tries to predict the future subsequent earnings surprises upon the first

announcement, it should be the case that the investors take the offsetting position upon

the firm’s own announcement. Therefore, the trading activity upon the first announcement,

as well as the market expectations of the subsequent earnings surprises should be able to

explain the trading activity of the subsequent announcer upon its own announcements. I

formalize this arguments in hypothesis 7.

Hypothesis 7. The subsequent announcer’s abnormal trading volume upon own an-

nouncement is driven by its abnormal trading volume upon the first announcement and

the market expectations updated upon observing this first announcement.

In order to perform the analysis, I employ two basic models, describing stock per-

formance and trading activity. The general form specifications of the models are as

follows:

Y = α+ βX + γZ + e, (2.1)

where Y is the vector of dependent variables. The matrix X contains the variables of

interest, while the matrix Z consists of the other control variables. The vector e represents

the error terms with zero mean and constant variances.

To study the stock performance, I compute the risk-adjusted cumulative average

abnormal returns using a four-factor model which includes the Fama and French (1993)

risk factors augmented with the Carhart (1997) momentum factor. This factor model is

shown in equation (2.2).

Ri,t = αi + βi,MKTMKTt + βi,SMBSMBt + βi,HMLHMLt + βi,MOMMOM t + εt (2.2)

I estimate the stock-specific factor betas using daily returns over a 255-day estimation
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period window that ends 46 days prior to each respective announcement date. These

firm-specific beta estimates allow me to generate the expected returns adjusted for these

common risk factors. Then, the abnormal returns are calculated as the difference between

these expected returns and the actual values. The abnormal return, ARi,t, (or prediction

error) for the common stock of firm i on day t is defined in equation (2.3):

ARi,t = Ri,t−(α̂i+β̂i,MKTMKTt+β̂i,SMBSMBt+β̂i,HMLHMLt+β̂i,MOMMOM t), (2.3)

where coefficients α̂i, β̂i,MKT , β̂i,SMB, β̂i,HML, and β̂i,MOM are the OLS estimates of

αi, βi,MKT , βi,SMB, βi,HML, and βi,MOM from equation 2.2.

Further, the cumulative abnormal returns over an interval starting on day T1 and

ending on day T2, CART1,T2, are calculated according to the equation (2.4):

CART1,T2 =
T2∑

t=T1

ARi,t (2.4)

Finally, the cumulative average abnormal returns over an interval starting on day T1

and ending on day T2, CAART1,T2, are obtained according to equation (2.5).

CAART1,T2 =
1

N

T2∑
t=T1

ARi,t, (2.5)

where N is the number of days between time T1 and T2 (i.e. N = T2− T1).

In the analysis of the trading activity, the dependent variable is the abnormal trading

volume. Since there is always some level of trading activity, any extra information should

rather be reflected in the abnormal trading volume. The abnormal trading volume is

defined as following (2.6):

ATV i,t =

TVi,t−
−375∑
t=−10

TVit/365

−375∑
−10

TVi/365

, (2.6)

where ATVi,t is the abnormal trading volume of stock i and time t, and TVit is the trading

volume of stock i at time t.

The matrix X of the variables of interest includes: SAATVi,t (SAATV owni,t) -

the subsequent i announcer’s abnormal trading volume on the day of the first (own)
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announcement in quarter t; FAATVi,t - the first announcer’s abnormal trading volume

in quarter t; SAMESi,t and FAMESi,t - the subsequent i announcer’s and the first

announcer’s mean earnings surprises respectively over the previous 20 quarters before the

current quarter t, where the earnings surprise was calculated as the difference between the

actual quarterly EPS and the mean forecast for that quarter, scaled by the last available

stock price in the quarter; SANPSi,t and FANPSi,t - the subsequent i announcer’s and

first announcer’s number of positive earnings surprises respectively over the previous 20

quarters before quarter t; SAESi,t and FAESi,t - the subsequent i announcer’s and first

announcer’s earnings surprise in quarter t.

Previous research on the persistency of earnings surprises takes into account the

sequence of the earnings surprises signs, but in this study I am going to consider two

aspects of the earnings surprises: how often the firm outbid the analysts’ forecasts

(measured by the number of the positive earnings surprises over the previous 20 quarters)

and by how much on average it did so over the previous 20 quarters (measured by the

mean of the earnings surprises over the previous 20 quarters). While the former history

may evidence the persistency in the positive earnings surprises, the latter can provide

some expected estimate of the earnings surprise.

The matrix Z of the other control variables consists of: MRET10i,t (MRE10owni,t) -

the subsequent i announcer’s mean of the returns excluding dividends over the last 10 trad-

ing days before the first (own) announcement in quarter t; MATV 10i,t (MATV 10owni,t) -

the subsequent i announcer’s mean of the abnormal trading volume over the last 10 trading

days before the first (own) announcement in quarter t; MRET182i,t (MRET182owni,t) -

the subsequent i announcer’s mean of returns over the last six months but 10 trading days

prior to the first (own) announcement in quarter t; MVi,t - the logarithm of the market

value of firm i in quarter t, calculated as the number of shares outstanding at the end

of the quarter multiplied by the last available share price for that quarter; BMi,t - the

book-to-market value of firm i in quarter t, which is calculated as the logarithm of the

ratio of total assets minus depreciation to the market value; and ACCi,t - the accruals

of firm i in quarter t, calculated as the change in the working capital from the previous

quarter minus depreciation scaled by total assets.

Means of the returns over the last six months and 10 trading days should take into

account the long- and short-term price momentum. The mean of the abnormal trading

volume over the last 10 trading days is included to remove the short-term trend in

trading volume and/or the managers’ incentives to trade strategically shortly before the
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Table 2.1: Summary statistics of cumulative average abnormal returns, %

Days upon
announcement

Announcement Mean SD Min Max N of obser-
vations

0-1 first 0.02 3.15 -12.87 14.67 53584
own 0.24 6.37 -23.83 22.83 50374

2-5 first -0.17 4.49 -17.29 20.24 45891
own -0.13 4.64 -17.67 19.34 50374

6-10 first -0.10 5.24 -20.71 23.23 36308
own -0.06 4.61 -17.59 20.08 50374

11-20 first -0.39 8.03 -28.66 31.21 13479
own -0.10 6.35 -24.57 28.55 50374

announcements (Korczak, Korczak, & Lasfer, 2010). Consistent with Thomas and Zhang

(2008) such variables asMV and BV are included for the control of previously documented

size and book-to-market effects, while ACC is used to account for the investors’ failure to

incorporate the information contained in the accruals (Sloan, 1996).

2.4 Data and Sample Selection

For the analysis of this chapter, I am working with the US stocks. The data on the market

variables such as stock prices, trading volume, and returns were taken from CRSP. IBES

quarterly data were used to obtain the analysts’ forecasts of earnings per share. The

accounting information was taken from the Compustat data set6.

From the IBES summary data file, I take the actual earnings per share (EPS) and

the last available mean of EPS forecasts for a given forecast period and consider only

the forecasts made for the current quarter. I drop those observations, which have the

estimates and/or reporting of the earnings in non-USD currency. Since the reporting

dates in IBES are considered to be more precise, the IBES earnings announcement dates

were used. I restrict the sample to those firms, which have a standard fiscal quarter end

(March 31, June 30, September 31, December 31) to make sure that the first announcing

firm and its peers report results for the same fiscal quarter7. I discard those observations

if a firm reports later than 91 days after the end of a forecast period. I also do not take

into account those observations when there is more than 1 firm reporting on the first

announcement date.

6A more detailed description of these data sets is provided in Chapter 1 of this thesis.
7In the whole sample there were 10% of observations with non-standard fiscal quarter ends.
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Figure 2.2: Cumulative average abnormal returns 95% confidence intervals of the means
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In the analysis of the cumulative average abnormal returns upon the first announcement,

for every time window I restrict the sample of subsequent announcing firms to those firms,

which report at least 3 days after the end of the appropriate time interval (i.e. in order

to be included in the sample for the time window of days 0-1 the subsequent announcer

should report no earlier than the 5th day after the first announcement). In doing so I

take care of the following. Firstly, I eliminate the confounding effect of the stock reaction

to the first in the industry, defined by 2 digit Standard Industrial Classification (SIC)

code and own announcements. Secondly, I am avoiding working with a very specific

sample. Restricting the sample to those firms reporting after the 20th day after the first

announcement (for the purpose of studying the persistency I consider the return windows

of up to 20 days after the first announcement) would lead to the very specific sample,

since there are only 25% of the firms announcing that late in the reporting season. This,

in turn, can also result from the fact that managers postpone the release of bad news

(Kothari, Shu, & Wysocki, 2009). At the same time, for the analysis of different return

windows upon the firm’s own announcement I only require the firms to report at least 3

days after the first announcement.

Calculating the means of the returns and trading volume from the CRSP daily data

set, I require the firms to have at least 50% of non-missing observations for a particular

interval window, i.e. for calculating the mean over 10, 182, or 365 trading days to be
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included in the sample the observations should have non-missing values for at least 5, 63,

and 126 trading days respectively.

In order to avoid the impact of the outliers, I winsorize all of the variables below the

1st and above the 99th percentiles respectively8. I also discard those observations for

which the Cook’s distance is equal or greater than one. The descriptive statistics of the

cumulative average abnormal returns, abnormal trading volume and the other control

variables is provided in tables 2.1, 2.2, and 2.3 respectively.

Table 2.2: Summary statistics of the abnormal trading volume

First announcer Subsequent announcer
1st announcement 1st announcement Own announcement

Days Mean SD No of
obs.

Mean SD No. of
obs.

Mean SD No of
obs.

-10 0.12 1.62 4620 0.05 1.07 53584 -0.02 0.96 50374
-9 0.12 1.93 4620 0.04 1.14 53584 -0.02 0.93 50374
-8 0.07 1.47 4716 0.02 1.03 53584 -0.05 0.86 50374
-7 0.07 1.31 4716 0.03 1.07 53584 -0.05 0.89 50374
-6 0.08 1.31 4717 0.03 1.09 53584 -0.04 0.87 50374
-5 0.09 1.20 4719 0.03 1.02 53584 -0.03 0.89 50374
-4 0.09 1.14 4719 0.02 1.01 53584 -0.03 0.89 50374
-3 0.07 1.15 4719 0.01 1.02 53584 -0.04 0.91 50374
-2 0.11 1.29 4721 -0.02 0.98 53584 -0.01 0.93 50374
-1 0.25 1.55 4722 -0.01 0.99 53584 0.09 0.96 50374
0 0.79 1.54 4722 -0.04 0.75 53584 0.70 1.45 50374
1 0.95 2.95 4722 0.00 1.15 53584 1.01 2.14 50374
2 0.42 1.45 4722 -0.01 1.05 53584 0.39 1.36 50374
3 0.35 2.29 4722 0.01 1.18 53584 0.24 1.32 50374
4 0.30 2.31 4721 0.05 1.31 53584 0.17 1.29 50374
5 0.27 1.91 4721 0.08 1.31 53584 0.14 1.41 50374
6 0.22 2.29 4721 0.10 1.29 53584 0.11 1.26 50374
7 0.20 2.07 4721 0.12 1.35 53584 0.07 1.21 50374
8 0.19 1.65 4721 0.14 1.32 53584 0.06 1.13 50374
9 0.15 1.54 4720 0.15 1.33 53584 0.05 1.08 50374
10 0.15 1.52 4719 0.18 1.41 53584 0.05 1.30 50374

The comparison of the cumulative average abnormal returns upon the first and own

announcements (Table 2.1 and Figure 2.2) suggests that the cumulative average abnormal

returns are, on average, higher upon the firm’s own announcement for the first time

8The analysis was also done without dropping any observation, as well as with dropping the observations
with the explanatory variables in the lowest and highest percentiles, but the results show the similar
pattern.
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Figure 2.3: Subsequent and first announcers’ abnormal trading volume 95% confidence
intervals of the means
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window of days 0-1 and the last time window of days 11-20 considered in the study. At

the same time I do not find any differences in the behavior of the cumulative average

abnormal returns upon the first and own announcements for the time windows of days

2-5 and 6-10.

The summary statistics of the abnormal trading volume of the first and subsequent

announcers upon their own announcements (Table 2.2 and Figure 2.3) reveals that for both

the first and subsequent announcer it follows the same pattern of increasing 1 day before

the firm’s own announcement, then jumping on the day of the announcement and the next

day after the announcement, and consequently slowly decaying. This pattern is consistent

with Chae (2005), since the announcements are the new informational signals about

the announcing firms in the first place. That is why these announcements draw market

attention to these firms, which may also result in higher trading activity (Hirshleifer et

al., 2009). The higher trading volume before the announcement is consistent with the

pre-announcement informative trading by short sellers (Christophe et al., 2004). Although

the pattern is the same for both first and subsequent announcers, I find some evidence

that the abnormal trading volume of the first announcer is, on average, higher for the

first announcer compared to the subsequent announcer. I hypothesize that this difference

in the trading activity upon the first and subsequent announcements upon their own

announcements results from the trading activity in the subsequent announcer stocks
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between the first and firm’s own subsequent announcements.

Figure 2.3 also provides a graphical comparison of the subsequent announcer’s ab-

normal trading volume upon the first and own announcements. The behavior of the

subsequent announcer’s abnormal trading volume upon the first announcement does

not follow the pattern of the abnormal trading volume upon the firm’s own subsequent

announcement. Moreover, one can see that the mean abnormal trading volume of the

subsequent announcer is, on average, higher before the first announcement than upon the

firm’s own announcement, which suggests that the trading volume can contain different

information, depending on what type of announcement one observes.

Table 2.3: Summary statistics of main control variables

Mean SD Min Max N of observations
SAMES -0.00 0.00 -0.03 0.01 53584
SANPS 10.68 5.29 0.00 20.00 53584
FAMES 0.00 0.00 -0.01 0.01 53584
FANPS 11.88 5.42 0.00 20.00 53584
SAES 0.00 0.01 -0.04 0.02 50374
FAES 0.00 0.00 -0.06 0.02 53584

MRET10 0.06 0.83 -3.13 3.29 53584
MRET10own 0.06 0.76 -2.83 3.41 50374
MATV 10 0.02 0.56 -0.73 3.84 53584

MATV 10own -0.02 0.50 -0.83 3.43 50374
MRET182 0.08 0.22 -0.71 0.91 53584

MRET182own 0.08 0.21 -0.72 0.91 50374
MV 13.67 1.53 9.57 17.72 53584
BM -7.03 0.81 -0.09 -3.68 53584
ACC -0.01 0.06 -0.27 0.38 53584

Note: SAMES and FAMES - the subsequent and first announcer’s mean earnings surprises over the previous 20 quarters,
where the earnings surprise was calculated as the difference between the actual quarterly EPS and the mean forecast for
that quarter, scaled by the last available stock price in that quarter; SANPS and FANPS - the subsequent and first
announcer’s number of positive earnings surprises over the previous 20 quarters; SAES and FAES - the subsequent and
first announcer’s earnings surprise; MRET10 andMRET10own - the subsequent announcer’s mean of the returns excluding
dividends over the last 10 trading days before the first announcement and own announcement respectively; MATV 10 and
MATV 10own - the mean abnormal trading volume over the last 10 trading days before the first and own announcement
respectively; MRET182 and MRET182own - the subsequent announcer’s mean of the returns over the last 182 days (or
six months) before the first and own announcement respectively; MV - the logarithm of the market value, calculated as the
number of shares outstanding at the end of the quarter multiplied by the last available stock price in that quarter; BM -
the book-to-market value, which is calculated as the logarithm of the ratio of total assets minus depreciation to the market
value; ACC - the accruals calculated as the change in the working capital from the previous quarter minus depreciation
scaled by total assets.

The data set covers the time period from January 1994 to March 2013. For the

analysis of the cumulative average abnormal returns over the days 0-1, 2-5, 6-10, and

11-20 upon first earnings announcement in the industry I have 53463, 47554, 37707 and

14048 observations respectively, which cover 4597 different firms. For the analysis of the
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cumulative average abnormal returns upon subsequent announcers’ own reporting I have

52149 observations, which comprise 4467 different firms. The analysis of the abnormal

trading volume on the first announcement day and the subsequent announcer’s own

reporting was done on 53463 and 52149 observations respectively.

2.5 Results

2.5.1 Intra-industry Price Responses upon the First Announce-

ment

For testing the hypotheses of informativeness of the first and subsequent announcers’

abnormal trading volume (hypotheses 1 and 3) in the model 2.1 for the cumulative

average abnormal returns I include the subsequent and first announcers’ abnormal trading

volume as the variables of interest. In order to test the informativeness of the earnings

surprises history (hypothesis 4) I also include the subsequent and first announcers’ means

of earnings surprises as well as their numbers of positive earnings surprises over the

previous 20 quarters. The full specification of the model for the analysis of the price

responses to the first announcement in the industry is the following:

CAARi,t = βo + β1SAATVi,t + β2FAATVi,t + β3SAMESi,t + β4SANPSi,t (2.7)

+ β5FAMESi,t + β6FANPSi,t + β7FAESi,t + γZ + εi,t,

where CAARi,t - the cumulative average abnormal returns of firm i over the appropriate

time interval upon the first announcement in quarter t; SAATVi,t and FAATVi,t - the

subsequent i and first announcer’s abnormal trading volume on the day of the first

announcement in quarter t; SAMESi,t and FAMESi,t - the subsequent i and the first

announcer’s mean of the earnings surprises over the previous 20 quarters before the current

quarter t, where the earnings surprise was calculated as the difference between the actual

quarterly EPS and the mean forecast for that quarter scaled by the last available stock

price in that quarter; SANPSi,t and FANPSi,t - the subsequent i and first announcer’s

number of positive earnings surprises over the previous 20 quarters before quarter t;

FAESi,t - the first announcer’s earnings surprise; Z is the matrix of other control variable:

MRET10i,t, MATV 10i,t, MRET182i,t, MVi,t , BMi,t, and ACCi,t; and εi,t is the error
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term with zero mean and constant variance.

The significance of such estimates as β1 and β2 will provide the support of hypotheses

3 and 4 of the informativeness of the subsequent and first announcers’ abnormal trading

volume about the subsequent announcer’s stock performance upon the first announcement.

The significance of the estimates β3, β4, β5, and β6 will be consistent with the hypothesis

that the earnings surprise history of both the subsequent and first announcer can explain

the subsequent announcer’s stock performance upon the first announcement (the first part

of hypothesis 4).

Table 2.4 contains the estimation results of the cumulative average abnormal returns

model, where I compare the basic model, the model extended for the abnormal trading

volume, and the full specification over different time interval windows. For all of the

returns windows, except for the last one, I observe that the extended and full models

perform better than the basic model - the adjusted R-squared increases.

From the extended and the full specification models I can see that the subsequent

announcer’s abnormal trading volume on the first announcement in the industry can

explain the subsequent announcer’s returns over the first three time windows (columns 2,

3, 5, 6, 8 and 9 in Table 2.4), while I do not find evidence of the subsequent announcer’s

abnormal trading volume being able to explain the abnormal returns over a time interval

of days 11-20 since the first announcement. I have three explanations for this pattern.

The first is that more sophisticated investors (or better informed ones) may respond to the

new information quite fast and adjust their trading activity immediately upon observing

the first earnings report. This adjustment will be reflected in the subsequent announcer’s

abnormal trading volume on the day of the first announcement. Less sophisticated

investors, in turn, observing the trading activity of the market may decide to follow the

suit of the more sophisticated ones and adjust their own trading activity accordingly.

The second explanation for the fast decaying significance of the subsequent announcer’s

trading volume is the arrival of new information signals coming from the other reporting

firms (those firms which report after the first announcer but before the subsequent

announcer in the sample).

The third explanation comes from the point of view that an increase in the trading

volume arises as the result of the heterogeneity in the beliefs. Since the market participants

may perceive differently the implications of the first announcer’s earnings surprise for the

subsequent announcer they may adjust their trading activity quite fast and as a result

the abnormal trading volume should not be able to explain the abnormal returns over the
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later time windows. This explanation can also be supported by the finding that the first

announcer’s abnormal trading volume on the day of the announcement is also significant

for two return windows. These findings are consistent with the evidence of Barber and

Odean (2008), if the institutional investors are selling while individual investors are buying

the stocks of the first announcer, while the opposite may happen to the trading activity

in the subsequent announcer’s stocks.

The fourth hypothesis states that the history of the earnings surprises of both the

first and the subsequent announcer can explain the abnormal returns upon the first

announcement in the industry. Contrary to expectations, the subsequent announcer’s

mean of the earnings surprises is not significant except for the first returns window, while

the opposite holds for the number of positive surprises - the estimate is positive and

significant except for the last two return windows.

Analyzing the effect of the first announcing surprise history, I can see that both

the mean and the number of positive earnings surprises of the first announcer are also

significant for the third returns windows. The insignificance of the first announcer’s of

the mean and number of the earnings surprises over the first two return windows may

evidence some lag in the response to the first announcer’s earnings report.

2.5.2 Can the Market Foresee the Earnings Surprises?

I am also interested in studying whether the significance of the abnormal trading volume

upon the first announcement is not solely determined by the ability of the market to

foresee the subsequent announcer’s earnings surprises and whether the abnormal trading

volume has any additional informational content (hypothesis 5). This analysis may also be

considered to be the robustness check for the abnormal trading volume being informative.

If the abnormal trading volume has no additional information besides the subsequent

announcer’s earnings surprises, then its estimates must be insignificant if I include some

expectations of the subsequent earnings surprise into the model for the analysis of

cumulative average abnormal returns. In other words, I want to see whether the abnormal

trading volume is of any use given that the market has some forecast of the subsequent

announcer’s earnings surprise. For these purposes I consider two forecast models: the

perfect forecast model and the imperfect forecast model.

The first model I call the perfect forecast model, which I obtain by modifying model

2.7 and including the yet unknown earnings surprise of the subsequent announcer. Since
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the perfect forecast is desirable, but not achievable, I want to compare the models with

the perfect forecast to that with imperfect forecast.

The subsequent announcer’s earnings surprise imperfect forecast model takes into

account the history of both the first and the subsequent announcers and the first an-

nouncer’s earnings surprise in the current quarter. While the history of both the first and

subsequent announcers is supposed to take into account the persistency in the earnings

surprise history, the first announcer’s earnings surprise accounts for the new information

for the current quarter. In addition, I also include the mean and standard deviation

of the subsequent announcer’s earnings forecast for the current quarter. The mean of

the forecast is supposed to take into account the degree to which the managers are able

to manage the current quarter earnings if there is any earnings management. I expect

that the higher the mean forecast the harder is it for the managers to beat the analysts’

expectations. The standard deviation of the earnings forecasts for the current quarter

is included in order to control for the disagreement between the analysts - the higher

the disagreement the fewer incentives the managers may have to beat the mean of the

analysts’ forecasts. I also expect the standard deviation of the forecasts to have negative

impact on the earnings surprise since the higher agreement between the analysts could

imply that it is much easier to produce the forecast, the smaller should be the earnings

surprise. Another explanations of why the mean forecast and the standard deviation of

the analysts’ forecast being able to explain the earnings surprise is the findings of Doukas,

Kim, and Pantzalis (2006) who show that the investors preferences for a particular stock

are driven by the combination of the analysts being pessimistic or optimistic about the

firm and the level of their divergence in the opinions. The managers may realize this

and adjust their earnings management accordingly. The specification of this model is the

following:

SAESi,t = α0 + α1SAMESi,t + α2SANPSi,t + α3FAMESi,t + α4FANPSi,t+,

+ α5FAESi,t + α6SAMFi,t + α7SASDFi,t + ui,t (2.8)

where SAESi,t and FAESi,t are the subsequent i and first announcer’s earnings surprises

in quarter t, calculated as the difference between the actual EPS and mean forecast scaled

by the last available stock price in quarter t; SAMESi,t and FAMESi,t - the subsequent i

and first announcer’s mean earnings surprises over the previous 20 quarters before quarter
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Table 2.5: The predictability of the subsequent announcer’s earnings surprise

SAES SAES
VARIABLES

SAMES 0.31*** 0.30***
(0.01) (0.01)

SANPS 0.00*** 0.00***
(0.00) (0.00)

FAMES 0.04***
(0.01)

FANPS 0.00***
(0.00)

FAES 0.03***
(0.01)

SAMF -0.02*** -0.02***
(0.00) (0.00)

SASDF -0.59*** -0.60***
(0.01) (0.01)

Constant 0.00*** 0.00
(0.00) (0.00)

Observations 93,749 93,749
Adj. R-squared 0.076 0.076

Note: SAES and FAES - the subsequent and first announcer’s earnings surprise; SAMES and FAMES - the subsequent
and first announcer’s mean earnings surprise over the previous 20 quarters, where the earnings surprise was calculated as
the difference between the actual quarterly EPS and the mean forecast for that quarter, scaled by the last available stock
price in that quarter; SANPS and FANPS - the subsequent and first announcer’s number of positive earnings surprise
over the previous 20 quarters; SAMF and SASDF - the subsequent announcer’s mean and standard deviation of the EPS
forecast for the current quarter respectively. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

t; SANPSi,t and FANPSi,t - the subsequent i and first announcer’s numbers of positive

earnings surprises over the previous 20 quarters before quarter t; SAMFi,t and SASDFi,t

- the subsequent i announcer’s mean and standard deviation of the EPS forecasts for

the current quarter respectively; and ui,t is the error term with mean zero and constant

variance.

The estimation results of the imperfect forecast model are presented in Table 2.5, where

I compare two models: one with only the subsequent announcer’s own history (column 1

of Table 2.5) and the other with the history of both first and subsequent announcer as

well as the first announcer’s earnings surprise in the current quarter.

The first inference is that the history of the subsequent announcer is able to predict

the subsequent earnings surprise. The mean and standard deviation of the EPS forecast

are also significant and of the expected sign. The results of column 2 of Table 2.5 provide
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evidence that it is not only that the first announcer’s earnings surprise can predict the

current quarter subsequent announcer’s earnings surprise, but also that the history of

the first announcer can predict the subsequent announcer’s earnings surprise. In other

words, the results suggest that the history of both the first and subsequent announcers

can predict the earnings surprises of the subsequent announcers.

The fully rational market agents should be able to exploit and incorporate the pre-

dictable part of the subsequent announcer’s earnings surprise in their actions. This implies

that the predicted part of model 2.8 cannot explain the cumulative average abnormal

returns if the investors are fully rational. On the contrary, the significant estimate next to

the predictive part of the subsequent announcer’s earnings surprises will provide evidence

of market inefficiency in incorporating the available information.

In order to study the market efficiency more deeply, I also compare the perfect and

imperfect forecast models. The full specification of these models is as follows:

CAARi,t = βo + β1SAATVi,t + β2FAATVi,t + β3FAESi,t + (2.9)

+ β4FORECi,t + γZ + εi,t

where CAARi,t - the cumulative average abnormal returns of firm i over the appropriate

time interval upon the first announcement in quarter t; SAATVi,t and FAATVi,t - the

subsequent i and first announcer’s abnormal trading volumes on the day of the first

announcement in quarter t; FAESi,t - the first announcer’s earnings surprise in quarter t,

calculated as the difference between the actual EPS and mean forecast scaled by the last

available stock price in that quarter; FORECi,t - the forecast of the earnings surprise; Z

is the same matrix of other control variables specified above, and εi,t is the error term

with zero mean and constant variance.

Depending on the model, the variable FORECi,t can obtain the following values:

• for the perfect forecast model FORECi,t = SAESi,t, i.e. the forecast is the subse-

quent announcer’s earnings surprise itself;

• for the imperfect forecast model FORECi,t = PSAESi,t, where PSAESi,t - is the

predicted part of the subsequent i announcer’s earnings surprise in quarter t obtained

from model 2.8;

• for the imperfect forecast model with a forecast error FORECi,t is the vector of the

77



variables consisting of PSAESi,t and USAESi,t, where PSAESi,t and USAESi,t

are the predicted and unpredicted parts of the subsequent i announcer’s earnings

surprise in quarter t obtained from model 2.8.

Table 2.6 contains the estimation results from three models: one with the perfect forecast

of the subsequent announcer’s earnings surprise, and imperfect forecast models with and

without the forecast error.

Firstly, I find that in all three models - even in the model with the perfect forecast - the

estimate of the abnormal trading volume is significant and of the same magnitude when I

did not have any forecasts of the subsequent announcer’s earnings surprises (Table 2.4).

Thus I conclude that even taking into account the subsequent announcer’s earnings surprise,

the abnormal trading volume upon the first announcement is informative, which again

supports hypothesis 1 of the subsequent announcer’s trading volume being informative

about its stock performance upon first announcement.

Further, I compare the estimates of the subsequent announcer’s earnings surprise and

its predicted value. The findings show that for the first return window the estimate of the

perfect and imperfect forecasts (columns 1 and 3 of Table 2.6) are significant and of the

opposite sign, being positive for the former and negative for the latter. The negative sign

of the predicted part of the subsequent announcer’s earnings surprise for the first return

window (Table 2.6 column 3) I explain as the efforts of some market agents to exploit

the predictability of the subsequent announcer’s earnings surprise. On the other hand,

the positive sign of the earnings surprise itself (Table 2.6 column 1) is rather driven by

the unpredictable part of the earnings surprise, which is supported by its significant and

positive estimate (Table 2.6 column 2). In the later return windows, the results suggest

that both the foreknowledge of the subsequent announcer’s earnings surprise and the

imperfect forecast can explain the subsequent announcer’s cumulative average abnormal

returns upon the first announcement. Moreover, I do not find any statistical difference of

the perfect and imperfect forecasts in being able to explain the subsequent announcer’s

abnormal trading volume upon the first announcement. Taken together, these results

support the hypothesis 5 that the market participants are not fully rational.

Comparing the models with perfect and imperfect forecasts (columns 1 and 3, 4 and 6,

7 and 9, and 10 and 12 of Table 2.6), I conclude that the model with imperfect forecast

still performs well - the adjusted R-squared is almost the same as in the model with the

perfect forecast.
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2.5.3 Drivers of the Abnormal Trading Volume upon the First

Announcement

The second part of hypothesis 3 states that the first announcer’s abnormal trading volume

is informative about the trading activity of the subsequent announcer, while the second

part of hypothesis 4 states that the history of both the first and subsequent announcers’

earnings surprises histories are informative about the trading activity of the subsequent

announcer. To test the second part of hypotheses 3 and 4, I study the drivers of the

trading activity of the subsequent announcing firms upon the first announcement in the

industry. For the purposes of this analysis I build a basic model and compare the results

with the model with the earnings surprise forecast.

The basic model of the subsequent announcer’s abnormal trading volume, first of all,

includes the first announcer’s earnings surprise as a piece of new information. Since I want

to test whether the first announcer’s trading volume leads to the changes in the trading

activity in the subsequent announcer’s stocks, I also include the first announcer’s abnormal

trading volume. I also expect that, depending on the earnings surprises history, the market

is going to treat the firms differently: the investors may have different incentives to trade

in the stocks with a long history of positive earnings surprises compared to the firms with

irregular positive earnings surprises. This might be the case since, for example, the firms

with a strong positive earnings surprise history may be perceived as good investment

firms, while the firms with an irregular earnings surprise history may be considered as

more risky. I also expect that the history of both the first and subsequent announcers

would matter and therefore I include the earnings surprise history of both into the basic

model.

Since I also expect that the market participants try to update their beliefs based on

the new information observed, these updated beliefs should be reflected in the trading

activity (the hypothesis 6). In order to test this hypothesis, I study whether the perfect

and imperfect forecasts can explain the subsequent abnormal trading volume upon the

first announcement.

The general forms of the full specification of the basic model and the model with the

earnings forecast are as follows respectively:

SAATVi,t = βo + β1FAATVi,t + β2SAMESi,t + β3SANPSi,t (2.10)
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+ β4FAMESi,t + β5FANPSi,t + β6FAESi,t + γZ + εi,t,

and

SAATVi,t = βo + β1FAATVi,t + β2FAESi,t + (2.11)

+ β3FORECi,t + γZ + ei,t

where SAATVi,t and FAATVi,t - the subsequent i and first announcer’s abnormal trading

volumes on the day of the first announcement in quarter t; SAMESi,t and FAMESi,t

- the subsequent i and the first announcer’s mean earnings surprises over the previous

20 quarters before the current quarter t, where the earnings surprise was calculated as

the difference between the actual quarterly EPS and the mean forecast for that quarter

scaled by the last available stock price in that quarter; SANPSi,t and FANPSi,t - the

subsequent i and first announcer’s number of positive earnings surprises over the previous

20 quarters before quarter t; FAESi,t - the subsequent announcer’s i and first announcer’s

earnings surprise in quarter t; FORECi,t - the forecast of the earnings surprise; Z is the

same matrix of other control variables specified above; and εi,t and ei,t are the error terms

with zero mean and constant variance. In a similar manner to the above, depending on

whether I have the perfect or imperfect forecast model, the variable FORECi,t can be

either SAESi,t or the vector consisting of PSAESi,t and USAESi,t respectively.

Table 2.7 contains the estimation results of three models: the basic model with the

history of the first and subsequent announcers’ earnings surprises (column 1), the model

with the history of the earnings surprises and the perfect forecast of the earnings surprises

(column 2), and the model with the imperfect forecast (i.e., the predicted and unpredicted

parts) of the subsequent announcer’s earnings surprise (column 3).

The first finding, supported by the estimation results from all the three models, is that

the first announcer’s earnings surprise does not have any impact on the trading activity in

the stocks of the subsequent announcer. I interpret the inability of the first announcer’s

earnings surprise to explain the trading activity in the subsequent announcer’s stocks as

the further evidence of trading volume being the extra information signal.

All the three models show that the abnormal trading volume of the subsequent

announcer is increasing in the first announcer’s abnormal trading volume upon its own

(first announcer’s) earnings report. I explain the positive sign of the estimate by the
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Table 2.7: Abnormal trading volume upon the first announcement

SAATV
VARIABLES (1) (2) (3)

SAES -0.21
(0.59)

PSAES -3.47**
(1.73)

USAES -0.09
(0.60)

FAATV 0.02*** 0.02*** 0.02***
(0.00) (0.00) (0.00)

FAES -0.75 -0.74 -0.48
(0.69) (0.69) (0.69)

SAMES 0.51 0.56
(0.97) (0.98)

SANPS -0.00** -0.00**
(0.00) (0.00)

FAMES 3.04** 3.04**
(1.20) (1.20)

FANPS -0.00*** -0.00***
(0.00) (0.00)

Other controls X X X

Observations 55,463 55,463 55,463
Adjusted R-squared 0.184 0.184 0.183

Note: SAATV and FAATV - the subsequent and first announcer’s abnormal trading volume upon the first announcement;
PSAES and USAES - the predicted and unpredicted parts of the subsequent announcer’s earnings surprise; SAMES and
FAMES - the subsequent and first announcer’s mean earnings surprises over the previous 20 quarters, where the earnings
surprise was calculated as the difference between the actual quarterly EPS and the mean forecast for that quarter, scaled
by the last available stock price in that quarter; SANPS and FANPS - the subsequent and first announcer’s number of
positive earnings surprises over the previous 20 quarters; SAES and FAES - the subsequent and first announcer’s earnings
surprise. Other controls include: MRET10 - the subsequent announcer’s average returns excluding dividends over the last
10 trading days before the first announcement; MATV 10 - the mean abnormal trading volume over the last 10 trading
days before the first announcement; MRET182 - the subsequent announcer’s average returns over the last 182 days (or
six months); MV - the logarithm of the market value, calculated as the number of shares outstanding at the end of the
quarter multiplied by the last available stock price in that quarter; BM - the book-to-market value, which is calculated as
the logarithm of the ratio of total assets minus depreciation to the market value; and ACC - the accruals calculated as the
change in the working capital from the previous quarter minus depreciation scaled by total assets. Robust standard errors
in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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heterogeneity of the beliefs or the presence of heterogeneous agents, which is in line with

the previous literature. Consistent with the findings of Barber and Odean (2008) the

institutional investors may be selling the stocks of the first announcer and individual

investors are more likely to buy them upon the first announcement date. At the same time

I expect that the institutional investors are more likely to buy the subsequent announcers’

stocks on the first announcement, since according to Boehmer and Kelley (2009) they

may be more efficient in incorporating the new information about the future subsequent

announcers based on the first announcer’s report.

I also find evidence that the history of the earnings surprises of both the first and

subsequent announcers can explain the abnormal trading volume of the subsequent

announcer upon the first announcement. But while the mean of the subsequent announcer’s

earnings surprises is insignificant in explaining the subsequent announcer’s trading volume,

the first announcer’s mean of earnings surprises is significant. Moreover, the number of

positive earnings surprises in the past of both announcers is significant and negative. I

interpret the negative sign of these two estimates in the following way. The probability of

observing the subsequent announcer’s positive earnings surprise in the current quarter is

increasing in both the number of positive surprises in the past of the first and subsequent

announcers, which is consistent with the model of predicting the subsequent announcer’s

earnings surprise from Table 2.5. Realizing this, the market agents may be more inclined

to hold those subsequent announcers’ stocks with higher probability of a positive surprise,

which results in lower trading activity in the stocks of these firms.

The estimation results also show that the perfect forecast (column 2 Table 2.7) cannot

explain the subsequent announcer’s trading activity. On the contrary, the predicted part

of the subsequent announcer’s earnings surprise is significant and negative (column 3

Table 2.7), which is expectable: if the market is expecting the higher earnings surprise of

the subsequent announcers, there will be fewer participants willing to trade in this stock.

Comparing all the models of abnormal trading volume, I can infer that the abnormal

trading volume of the subsequent announcer is driven rather by market expectations of

the subsequent announcer future performance than just solely by the news from the first

announcer, since the first and subsequent announcers earnings surprises are insignificant,

while the predicted part of the subsequent announcer can explain its earnings surprise.

So these findings also support the hypothesis that at least some of the market agents will

try to trade strategically based on the updated beliefs upon the first announcement.
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2.5.4 Price Responses upon Own Announcement

The main idea is that the abnormal trading volume upon the first announcement should

serve as additional information for purifying the information content to the implication of

the first announcer’s earnings surprise for the subsequent announcer. On the other hand,

upon the firm’s subsequent own announcement the market receives a clear information

signal about the subsequent announcer’s performance. If the abnormal trading volume

has only incremental informative power for purifying the noisy signals, the subsequent

announcer’s abnormal trading volume upon its own announcement should be unable

to explain the cumulative average abnormal returns upon own announcement. On the

contrary, the findings that the subsequent announcer’s abnormal trading volume upon

its own announcement are able to explain the stock performance can be considered as

stronger evidence of trading volume informativeness (hypothesis 2). Moreover, I also

expect that the subsequent announcer’s history of own earnings surprises can explain the

stock performance of the subsequent announcer upon its own announcement (hypothesis

4).

For testing these hypotheses, I again consider three models: the basic model, the

model with the history of subsequent announcers’ earnings surprises, and that with the

imperfect forecast of the earnings surprise. The full specification of these models is as

follows:

The basic model of cumulative average abnormal returns upon own announcement:

CAARowni,t = βo + β1SAATV owni,t + β2SAMESi,t + β3SANPSi,t + (2.12)

+ β4SAESi,t + β5FAESi,t + γZown+ εi,t,

The cumulative average abnormal returns model with the imperfect forecast of the

earnings surprises

CAARowni,t = βo + β1SAATV owni,t + β2PSAES + β3USAESi,t+,

+ β4FAESi,t + γZown+ εi,t (2.13)

where CAARowni,t - the subsequent i announcer’s cumulative average abnormal returns

84



T
ab

le
2.
8:

C
um

ul
at
iv
e
av
er
ag

e
ab

no
rm

al
re
tu
rn
s
up

on
ow

n
su
bs
eq
ue
nt

an
no

un
ce
m
en
t

C
um

ul
at
iv
e
av
er
ag
e
ab

no
rm

al
re
tu
rn
s
ov
er

w
in
do

w
s
(d
ay

s
up

on
th
e
fir
st

an
no

un
ce
m
en
t)

D
ay

s
0-
1

D
ay

s
2-
5

D
ay

s
6-
10

D
ay

s
11
-2
0

V
A
R
IA

B
L
E
S

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

SA
A
T
V
ow

n
-0
.0
5*
**

-0
.0
5*
**

-0
.0
5*
**

0.
03
**

0.
03
*

0.
03
**

0.
02

0.
02

0.
02

-0
.0
0

-0
.0
0

-0
.0
0

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

(0
.0
2)

SA
M
E
S

-6
4.
26
**
*

-1
7.
19
**

-1
3.
16
*

-2
3.
21
**

(9
.2
4)

(6
.9
5)

(6
.9
4)

(9
.5
8)

SA
N
P
S

0.
01
3*
*

0.
02
**
*

0.
02
**
*

0.
01
*

(0
.0
1)

(0
.0
0)

(0
.0
0)

(0
.0
1)

SA
E
S

29
3.
5*
**

29
8.
5*
**

40
.8
7*
**

41
.0
4*
**

20
.1
5*
**

19
.9
3*

**
3.
83

5.
09

(5
.6
5)

(5
.7
2)

(4
.2
5)

(4
.3
0)

(4
.2
4)

(4
.2
9)

(5
.8
6)

(5
.9
3)

P
SA

E
S

25
0.
1*
**

39
.0
3*
**

15
.5
8

-1
0.
59

(1
6.
46
)

(1
2.
37
)

(1
2.
35
)

(1
7.
05
)

U
SA

E
S

29
7.
1*
**

41
.0
2*
**

20
.5
3*
**

5.
01

(5
.7
9)

(4
.3
6)

(4
.3
5)

(6
.0
0)

FA
E
S

3.
26

3.
17

4.
74

-1
2.
26
**

-1
2.
85
**
*

-1
2.
20
**

-0
.9
6

-1
.5
9

-0
.8
0

13
.3
6*

*
13
.0
6*
*

13
.8
5*
*

(6
.4
2)

(6
.4
3)

(6
.4
5)

(4
.8
3)

(4
.8
3)

(4
.8
5)

(4
.8
2)

(4
.8
2)

(4
.8
4)

(6
.6
6)

(6
.6
6)

(6
.6
8)

O
th
er

co
nt
ro
ls

X
X

X
X

X
X

X
X

X
X

X
X

O
bs
er
va
ti
on

s
52
,1
49

52
,1
49

52
,1
49

52
,1
49

52
,1
49

52
,1
49

52
,1
46

52
,1
46

52
,1
46

52
,0
95

52
,0
95

52
,0
95

A
dj
.
R
-s
qu

ar
ed

0.
05
6

0.
05
7

0.
05
6

0.
01
0

0.
01
1

0.
01
0

0.
00
5

0.
00
6

0.
00
6

0.
01
0

0.
01
0

0.
01
0

N
ot

e:
S
A
A
T
V
o
w
n
-
th
e
ab

no
rm

al
tr
ad

in
g
vo
lu
m
e
on

th
e
da

y
of

th
e
ow

n
an

no
un

ce
m
en
t;

S
A
M

E
S
-
th
e
su
bs
eq
ue

nt
an

no
un

ce
r’
s
m
ea
n
ea
rn
in
gs

su
rp
ri
se
s
ov
er

th
e
pr
ev
io
us

20
qu

ar
te
rs
,

w
he
re

th
e
ea
rn
in
gs

su
rp
ri
se

w
as

ca
lc
ul
at
ed

as
th
e
di
ffe

re
nc
e
be

tw
ee
n
th
e
ac
tu
al

qu
ar
te
rl
y
E
P
S
an

d
th
e
m
ea
n
fo
re
ca
st

fo
r
th
at

qu
ar
te
r,
sc
al
ed

by
th
e
la
st

av
ai
la
bl
e
st
oc
k
pr
ic
e
in

th
at

qu
ar
te
r;

S
A
N
P
S
-
th
e
su
bs
eq
ue
nt

an
no

un
ce
r’
s
nu

m
be

r
of

po
si
ti
ve

ea
rn
in
gs

su
rp
ri
se
s
ov
er

th
e
pr
ev
io
us

20
qu

ar
te
rs
;S

A
E
S
an

d
F
A
E
S
-
th
e
su
bs
eq
ue
nt

an
d
fir
st

an
no

un
ce
r’
s
ea
rn
in
gs

su
rp
ri
se
;
P
S
A
E
S

an
d

U
S
A
E
S

-
th
e
pr
ed
ic
te
d
an

d
un

pr
ed
ic
te
d
pa

rt
s
of

th
e
su
bs
eq
ue
nt

an
no

un
ce
r’
s
ea
rn
in
gs

su
rp
ri
se
.

O
th

er
co

nt
ro

ls
in

cl
ud

e:
M

R
E
T
1
0
o
w
n

-
th
e
su
bs
eq
ue
nt

an
no

un
ce
r’
s
m
ea
n
of

th
e
re
tu
rn
s
ex
cl
ud

in
g
di
vi
de
nd

s
ov
er

th
e
la
st

10
tr
ad

in
g
da

ys
be

fo
re

th
e
ow

n
an

no
un

ce
m
en
t;

M
A
T
V
1
0
o
w
n
-
th
e
m
ea
n
ab

no
rm

al
tr
ad

in
g
vo
lu
m
e
ov
er

th
e
la
st

10
tr
ad

in
g
da

ys
be

fo
re

th
e
ow

n
an

no
un

ce
m
en
t;

M
R
E
T
1
8
2
o
w
n
-
th
e
su
bs
eq
ue
nt

an
no

un
ce
r’
s
m
ea
n
of

th
e
re
tu
rn
s
ov
er

th
e
la
st

18
2
da

ys
(o
r
si
x
m
on

th
s)
;
M

V
-
th
e
lo
ga
ri
th
m

of
th
e

m
ar
ke
t
va
lu
e,

ca
lc
ul
at
ed

as
th
e
nu

m
be

r
of

sh
ar
es

ou
ts
ta
nd

in
g
at

th
e
en
d
of

th
e
qu

ar
te
r
m
ul
ti
pl
ie
d
by

th
e
la
st

av
ai
la
bl
e
st
oc
k
pr
ic
e
in

th
at

qu
ar
te
r;

B
M

-
th
e
bo

ok
-t
o-
m
ar
ke
t
va
lu
e,

w
hi
ch

is
ca
lc
ul
at
ed

as
th
e
lo
ga
ri
th
m

of
th
e
ra
ti
o
of

to
ta
l
as
se
ts

m
in
us

de
pr
ec
ia
ti
on

to
th
e
m
ar
ke
t
va
lu
e;

an
d
A
C
C

-
th
e
ac
cr
ua

ls
ca
lc
ul
at
ed

as
th
e
ch
an

ge
in

th
e
w
or
ki
ng

ca
pi
ta
l
fr
om

th
e
pr
ev
io
us

qu
ar
te
r
m
in
us

de
pr
ec
ia
ti
on

sc
al
ed

by
to
ta
l
as
se
ts
.
R
ob

us
t
st
an

da
rd

er
ro
rs

in
pa

re
nt
he
se
s.

**
*
p<

0.
01
,
**

p<
0.
05
,
*
p<

0.
1.

85



over the appropriate time interval upon the own announcement, SAATV owni,t - the

subsequent i announcer’s abnormal trading volume on the day of the firm’s own announce-

ment in quarter t; SAMESi,t - the subsequent i announcer’s mean earnings surprises

over the previous 20 quarters before quarter t; SANPSi,t - the subsequent i announcer’s

numbers of positive earnings surprises over the previous 20 quarters before quarter t;

SAESi,t - the subsequent i announcer’s earnings surprise, which was calculated as the

difference between the actual quarterly EPS and mean forecast scaled by the last available

stock price in quarter t; PSAESi,t and USAESi,t - the predicted and unpredicted parts

of the subsequent i announcer’s earnings surprise in quarter t; Zown is the matrix of

other control variables, namelyMRET10owni,t, MATV 10owni,t MRET182owni,t, MVi,t,

BMi,t, and ACCi,t; and εi,t is the error term with zero mean and constant variance.

Table 2.8 contains the estimation results of the cumulative average abnormal returns

upon the subsequent announcer’s own reporting. Firstly, according the results the abnormal

trading volume upon the subsequent own announcement is significant for the first two

return windows. What is interesting is that the abnormal trading volume changes its sign

from negative for the first return window to positive for the second return window. I explain

this in the following way. Since the firm’s announcement draws the market attention

to the announcing firm, the market may overreact to the new information, resulting in

higher trading activity and lower returns, but then this overreaction is quickly offset,

which is consistent with the reversal of the sign of the estimate of the abnormal trading

volume. The findings also show that the significance of the abnormal trading volume

is more persistent upon the first announcement than upon the firm’s own subsequent

announcement. The higher persistency of the trading volume upon the first announcement

can result from the fact that upon the first announcement the market receives more noisy

signals, explaining why it might take longer for its informativeness to disappear or be

incorporated fully.

The extended model shows us that the earnings surprise history of the subsequent

announcer can also explain the subsequent announcer’s price responses upon its own

announcement. I observe that the two measures of history are perceived differently by

the market. The significant and negative estimate of the mean of the earnings surprises

I explain as the market overreaction to the history of the stock. Upon observing the

subsequent announcer’s own report the market participants may realize the predictive

power of the mean of the past positive earnings surprises and take appropriate corrective

steps. On the other hand, the significant and positive estimate of the number of positive
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earnings surprise for all the returns window provides evidence that the market underreacts

to the sequence of positive earnings surprises.

To get more insights into the efficiency of the market, I also compare how the subsequent

announcer’s earnings surprise itself and its imperfect forecast, available at the first

announcement, can explain the subsequent announcer’s stock performance upon its own

announcement (Table 2.8). The estimates of the subsequent announcer’s earnings surprise

as well as the predicted and unpredicted parts of the forecast model are positive and

significant. The positive and significant estimate of the subsequent announcer’s earnings

surprise is consistent with previous research and suggests the market underreacts to the

earnings surprise. Moreover, the results also provide further evidence of market inefficiency

(the first part of hypothesis 5) since the estimates of the earnings surprise and the predicted

and unpredicted parts are not economically or statistically different from each other.

The findings also show that the underreaction to the unpredicted part persists a while

longer - the estimate of the unpredicted part is still significant and positive for the third

return window, while it is not significant for the predictive part. Since the estimate of

the subsequent announcer’s earnings surprise is also significant and positive for the third

return window, I believe this significance is driven by the unpredicted part. These findings

are also quite reasonable and can be interpreted such that it takes less time to adjust to

something more expectable than to something less expectable, which is consistent with the

literature on representativeness bias as the explanation of market inefficiencies (Barberis

et al., 1998; Brav & Heaton, 2002; Alti & Tetlock, 2014; Gennaioli et al., 2015).

2.5.5 Trading Volume and Own Announcement

As the last step in the analysis, I study the driving forces on the abnormal trading

volume upon own announcement. The second part of hypothesis 4 states that the

subsequent announcer’s abnormal trading volume is driven by its own history of the

earnings surprises. Moreover, in hypothesis 7 I state that the subsequent announcer’s

abnormal trading volume is also driven by the beliefs updated upon observing the first

announcement.

To test these hypotheses I compare three models: the basic model, the model with the

earnings surprise history, and the imperfect forecast model of earnings surprise. These

models have the following specifications:
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Table 2.9: Abnormal trading volume upon own subsequent announcement

SAATVown
VARIABLES (1) (2) (3)

SAATV 0.04*** 0.04*** 0.04***
(0.01) (0.01) (0.01)

FAATV 0.03*** 0.03*** 0.03***
(0.00) (0.00) (0.00)

SAMES 7.91***
(2.05)

SANPS 0.02***
(0.00)

SAES 7.61*** 5.59***
(1.26) (1.27)

PSAES 33.37***
(3.66)

USAES 5.48***
(1.29)

FAES 3.05** 2.42* 2.18
(1.43) (1.43) (1.44)

Other controls X X X

Observations 52,149 52,149 52,149
Adjusted R-squared 0.110 0.113 0.111

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: SAATV own - the abnormal trading volume upon own announcement; SAES and FAES - the subsequent and first
announcer’s earnings surprise; PSAES and USAES - the predicted and unpredicted parts of the subsequent announcer’s
earnings surprise; SAATV and FAATV - the subsequent and first announcer’s abnormal trading volume upon the first
announcement; SAMES - the subsequent announcer’s mean earnings surprises over the previous 20 quarters, where the
earnings surprise was calculated as the difference between the actual quarterly EPS and the mean forecast for that quarter,
scaled by the last available stock price in that quarter. Other controls include: MRET10own - the subsequent announcer’s
mean of the returns excluding dividends over the last 10 trading days before the own announcement; MATV 10own -
the mean abnormal trading volume over the last 10 trading days before the own announcement; MRET182own - the
subsequent announcer’s average returns over the last 182 days (or six months); MV - the logarithm of the market value,
calculated as the number of shares outstanding at the end of the quarter multiplied by the last available stock price in that
quarter; BM - the book-to-market value, which is calculated as the logarithm of the ratio of total assets minus depreciation
to the market value; ACC - the accruals calculated as the change in the working capital from the previous quarter minus
depreciation scaled by total assets. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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The basic model of the abnormal trading volume upon own announcement

SAATV owni,t = β0 + β1SAATV i,t + β2FAATVi,t + β3SAMESi,t + (2.14)

+ β4SANPSi,t + β5SAESi,t + β6FAESi,t + γZown+ εi,t,

The model of the abnormal trading with the imperfect forecast of earnings surprises

SAATV owni,t = β0 + β1SAATVi,t + β2FAATVi,t + β3PAESi,t + (2.15)

+ β4USAESi,t + β5FAESi,t + γZown+ εi,t,

where SAATV owni,t - the subsequent i announcer’s abnormal trading volume on the day

of the own announcement in quarter t; SAATVi,t and FAATVi,t - the subsequent i and

first announcer’s abnormal trading volume on the day of the first announcement in quarter

t; SAMESi,t - the subsequent i announcer’s mean earnings surprises over the previous 20

quarters before quarter t; SANPSi,t - the subsequent i announcer’s number of positive

earnings surprise over the previous 20 quarters before quarter t; FAESi,t and SAESi,t -

the first and subsequent i announcer’s earnings surprises, which were calculated as the

difference between the actual quarterly EPS and mean forecast scaled by the last available

stock price in quarter t; PSAESi,t and USAESi,t - the predicted and unpredicted parts of

the subsequent i announcer’s earnings surprise in quarter t; Zown is the matrix of other

control variables specified above, and εi,t is the error term with zero mean and constant

variance.

The estimation results are reported in Table 2.9. The significance of the subsequent

announcer’s abnormal trading volume upon the first announcement supports hypothesis 7.

The positive estimate of the subsequent announcer’s abnormal trading volume is in line

with the reasoning that at least some of the market participants may see the profitable

opportunities on the day of the first announcement (which is also supported by the

findings in section 5.3) take the appropriate trading positions and then subsequently take

the offsetting trading position upon the subsequent announcer’s own earnings reporting.

As discussed in section 5.3, the more sophisticated market players such as institutional

investors may buy the subsequent announcers’ stocks on the day of the first announcement,

that is why I expect that on their subsequent own announcement these market players
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may take the offsetting position. I expect the opposite for the trading activity for the

first announcer and as a result the trading activity in the first announcer’s stock on the

first announcement has the predictive power in explaining the subsequent announcer’s

trading activity.

I also find that both aspects of the history of earnings surprises - the mean and number

of positive earnings surprises - are positive and significant. Taking into account that the

mean of the earnings surprises was significant and negative for the cumulative average

abnormal returns upon own announcement for the first return window, the significance of

the mean of the earnings surprise in the regression of the abnormal trading volume upon

own announcement can be considered as further evidence of the market overreaction to

this measure of earnings surprise history. The trading activity upon own announcement

also increases in the number of positive earnings surprises. This suggests that the market is

aware of the predictability of the subsequent announcer’s earnings surprise, but underreacts

to this measure of the earnings surprise history, given the significant and positive estimate

of the number of positive earnings surprises in the regression of the cumulative average

abnormal returns for all of the returns window from section 2.5.4 (Table 2.8).

Comparing the models with the earnings surprise itself and the imperfect forecast, I

can conclude that the trading activity upon own announcement is driven by the earnings

surprise. At the same time I also find that the predictive part of the earnings surprise

has a much stronger impact on trading activity than the unpredicted part. This larger

trading activity response to the predicted part can also explain the faster decay of the

significance of the predicted part in the regression of the cumulative average abnormal

returns discussed in section 2.5.4.

2.6 Conclusion

The main finding of this chapter suggests that abnormal trading volume can serve as

an additional information signal. Moreover, I find that the abnormal trading volume

is informative not only upon the first announcement, but also upon the subsequent

announcer’s own report date.

Comparing the impact of the abnormal trading volume on the cumulative average

abnormal returns upon the first and subsequent own announcement, I can summarize

the following. Upon the own announcement, the significance of the abnormal trading

volume disappears faster than upon the first announcement. I rationalize it as follows.
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Upon observing the first announcement in the industry the market participants may

try to produce or update their forecast of the subsequent announcer’s earnings surprise.

It is natural to expect that their forecast is not going to be perfect. That is why the

trading volume will reflect the imperfect forecast and market participants’ trading activity

will be driven by the forecast update. So the abnormal trading volume serves as the

purifying information signal about a subsequent announcer’s earnings surprise upon the

first announcement in the industry, but the informativeness of the abnormal trading

volume is incorporated much faster upon the subsequent own earnings announcement.

I also show that the first and subsequent announcers’ history of the earnings surprises is

informative about the stock performance and trading activity of the subsequent announcer.

The results suggest that both of the measures of the earnings surprise history are important

- by how much the firm surprised the market (measured by the mean of the earnings

surprises over the previous 20 quarters) and how often it did so in the past (measured by

the number of positive earnings surprises over the previous 20 quarters). At the same

time I provide evidence that the mean of the earnings surprises has much lower power in

explaining the cumulative average abnormal returns and trading volume than the number

of positive earnings surprises. This suggests that the market, firstly, considers these two

components of the history differently and, secondly, that there is a stronger underreaction

to the sequence of positive earnings surprises compared to the mean value in the past.

Besides, I also show that the history of both the first and subsequent announcers’

earnings surprises is valuable for predicting the subsequent earnings surprise. I further

use this predictability to test the market efficiency and find that although the market

tries to incorporate this predictability of the subsequent announcer’s earnings surprise, it

fails to fully do so at once.
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Chapter 3
The EU members’ International Portfolio

Investment Positions1

1The earlier version of this chapter was published as Brushko, I., and Hashimoto, M. Y. (2014). The
Role of Country Concentration in the International Portfolio Investment Positions for the European
Union Members. IMF Working Paper No. 14-74.
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Abstract

(with Yuko Hashimoto)

This chapter studies the international portfolio flows of European Union members. We find

evidence that the EU members’ shares of the total portfolio investments at the destination

tend to move together, which may result from the higher financial integration between the

countries. At the same time, there is still a diversity among the country-members in the

level of financial development and sophistication, which may lead to the differences in the

investment strategies employed by the countries. Our analysis includes two dimensions of

the EU members’ investment strategies: (1) the level of countries’ portfolio investment

concentration (those who invest evenly among counterparties versus those who invest

more heavily in some counterparties) and (2) the share of total portfolio investment

assets invested at the destination. We find that portfolio investment positions respond

differently to macroeconomic variables depending on the level of investment concentration

and the share of invested assets. We also find evidence of the crisis period affecting

both the co-movements of the EU members’ investment shares at destination and the

macrovariables driving international portfolio investments. In particular, variables of the

health of the financial system become important determinants for portfolio investment

during the crisis.
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3.1 Introduction

Financial integration is one of the fundamental goals of the EU, as it may provide

competitive advantages and bring prosperity to the member states (Guiso, Jappelli,

Padula, & Pagano, 2004; Pagano & Von Thadden, 2004; Masten, Coricelli, & Masten,

2008). One of the outcomes of higher financial integration might be that the financial

markets of all the EU members act as a single market. If that is the case then the

international portfolio investments stemming from the EU countries will show a high

degree of co-movements. This might be of special concern in the case when a destination

country is hit by a shock. During a period of turbulence the correlation of the assets risk

and returns rises (Chesnay & Jondeau, 2001; Ang & Bekaert, 2002; Butler & Joaquin, 2002;

Forbes and Rigobon 2002), which increases the exposure of investing countries to common

risk factors. The increase in common risk factors may result in an even higher degree

of co-movements of the EU members’ shares of the total portfolio investments. This, in

turn, may have an amplifying and significant effect on international portfolio outflows and

financial stability of the country-destination, since the fully integrated financial market of

the EU countries by size can be compared that of the US (Guiso et al., 2004).

At the same time, the full financial integration of the EU members is still not achieved,

mainly due to the diversity in the level of financial development and financial sophis-

tication. This may result in different motives, preferences and investment strategies

of the international portfolio allocation. In particular, the EU countries may differ in

their preferences for diversification versus concentration. The benefits of international

diversification are well studied (Ang & Bekaert, 2002; Khoury, 2003; Das & Uppal, 2004;

Flavin & Panopoulou, 2006; Driessen & Laeven, 2007; De Santis & Sarno, 2008 ), but

the concentration might still be attractive for investors since it enables the building of an

information advantage (Kacperczyk, Sialm, & Zheng, 2005; Ivkovic, Sialm, & Weisbenner,

2008; Huij & Derwall, 2011).

As the consequence of differences in motivation to invest internationally, and the

investment strategies employed by the EU countries, one may expect correspondingly

heterogeneous responses to the same changes in the investment environment. Although

there is an extensive literature on the relative benefits of diversification and concentration,

studies are scarce on the specific question of how the choice of one or the other can

explain changes in international portfolio investment positions. Moreover, while most of

the studies on the diversification and concentrations analyze individual portfolios, we, in
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contrast, consider how the preferences for one of these, aggregated at the country level

can explain the international portfolio investments. To fill this gap in the literature, the

present study tries to determine whether an investment strategy aggregated at the country

level matters for a country’s international investment reallocation. Investment strategy

is characterized by two dimensions: investment type - low or high concentration - of

the source countries; and investment share at the destination. Investment concentration

measures the extent to which a source country has concentrated its investments; that

is, a country that invests more evenly among many counterparties is considered a low-

concentration country, whereas a country that invests heavily in only a few counterparties

is considered a high-concentration country. One may think of the investment concentration

as an investment style of forming the portfolio, which we measure by the concentration

index and detail later in the text, while investment share at destination describes the

asset allocation decision into a particular country-destination.

We contribute to the literature in several ways. Firstly, we study to what extent the

EU members’ shares of the total international portfolio investments exhibit a tendency to

co-move together, which might be useful for policy makers in their attempts to assess the

risk associated with the international portfolio investments’ volatility. Secondly, we study

the role of the EU members’ diversity in the international portfolio allocation, by looking

at how different investment types (high- or low-concentration) of the EU countries and the

investment share at the destination affects the countries’ portfolio investment decisions.

This diversity, on the one hand, may suggest some extra benefits for the EU members

themselves, especially during increased financial turbulence (Guiso et al., 2004), since

it may serve as an extra buffer. For the reasons discussed above, it also might actually

matter much more for the country-recipients.

Firstly, our empirical results show that the EU members’ shares of the total portfolio

investments are highly correlated. However, the correlation of the co-movements of the

EU members’ investment shares depend on the country destinations: the co-movements

of EU members’ investment shares into the non-EU member destination countries are

more aligned compared to the EU member’s investment shares into the EU member

destination countries. This correlation of the co-movements of the EU members’ shares

of the total portfolio investments decreases for the subsample of the non-EU member

destination countries during the crisis, while there is some evidence of a small and almost

negligible change in the explanatory power of common factors of the co-movements of

the EU members’ shares of the total portfolio investments for the sub-sample of the EU
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member destination countries.

Secondly, the estimation results of this study suggest that the EU members’ investment

type (high- or low-concentration) plays a role in explaining changes in international

portfolio investment positions. The results also show that low-concentration countries

respond in the opposite direction relative to the high-concentration type: when the

portfolio flows exhibit a negative reaction to the changes in the macro variables for the

high-concentration type, the low-concentration type reaction to such variables is less

negative or even positive; conversely, the positive reaction of the high-concentration type

is accompanied by a less positive reaction of the low-concentration type. Moreover, the

analysis reveals that the crisis changes the set of the variables that elicit these differing

responses from the two types: before the crisis, the types mainly differ in their responses

to the general macroeconomic conditions (GDP growth, CPI, unemployment, government

debt, etc.), while during the crisis the types put different weights on the variables that can

signal the health of the financial system (short- and long-term interest rates, stock index

and stock index growth). We believe that our findings can help policymakers to predict

and manage severe capital outflows that can occur when a country faces unexpected

(exogenous) market liquidity shocks and contagion.

The chapter is organized as follows. In the second section we discuss the related

literature and state our hypotheses. The third section introduces the methodology. The

main variables and data sources are discussed in the fourth section. The main empirical

results are discussed in the fifth section. The sixth section concludes.

3.2 Related Literature and Hypotheses

It is believed that when all agents of the financial markets across the EU member states face

identical financial regulation rules and have equal access to the financial sector instruments

and services, which is the goal pursued by the European Commission, financial integration

may be achieved. According to the European Financial Integration report of 2009 (The

European Commision, 2009) there was substantial progress in that direction since the

Lisbon European Council summit in 2000. The complete financial integration of the EU

countries may lead to the creation of a single continent-wide financial market. On the one

hand, the creation of the single financial market may imply that the member countries

have equal excess to the financial markets within the union as well as to the global financial

system and may get huge benefit from this as shown by Guiso et al. (2004), Pagano and
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Von Thadden (2004), Masten et al. (2008). On the other hand, this may also imply that the

countries are exposed to the same risk due to higher financial interdependence among the

countries (Arezki, Candelon, & Sy, 2011; Syllignakis & Kouretas, 2011; Alter & Schüler,

2012). As a consequence one might consider the international portfolio investments

originated from the EU member states as such coming from the single entity or single

market. If that is the case, one might expect that the international portfolio investments

of the EU members will exhibit a high degree of co-movements. These arguments led us

to the following hypothesis.

Hypothesis 1: The EU members’ shares of total portfolio investment into the country-

destinations are driven by the common factors.

We also expect that the co-movements of the EU members’ shares of the total portfolio

investments will not be stable over time in our sample. We have two competing explanations

for this instability. The first is motivated by the analysis of the European Financial

Integration report of 2009 (The European Commision, 2009) according to which there

was an increase in the segmentation of the financial markets across the EU members as a

response to the global financial crisis. The increased financial segregation may lead to

the lower explanatory power of the common factors driving the EU members’ shares of

total portfolio investments, which may imply a lower degree of co-movements of the EU

members’ shares of the portfolio investments.

The second explanation comes from a steady increase in the correlation of returns and

risk among countries due to the globalization and global economic integration. Moreover,

the correlation of the asset returns across countries increases sharply during economic

slowdowns (Chesnay & Jondeau, 2001; Ang & Bekaert, 2002; Butler & Joaquin, 2002;

Forbes & Rigobon, 2002; Hartmann, Straetmans, & De Vries, 2004; Cappiello, Engle,

& Sheppard, 2006). These findings suggest that all the EU countries’ exposure to the

common factors may increase in response to the global financial crisis, which may lead

to higher co-movements in the EU members’ shares of the total portfolio investments.

Although it is not clear which effect will dominate – the increase in the financial segregation

or the increase in the exposure to the common factors – it is expected that either of them

will have an impact on the co-movements of the EU members’ shares of the total portfolio

investments. These considerations motivated us for the following hypothesis.

Hypothesis 2: The common factors of the co-movements of EU members’ shares of the

total portfolio investments will have different explanatory power for the two subsamples,

consisting of the years 2001-2006 and 2007-2010 respectively.
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Although, there is evidence of the increasing financial integration of the EU members,

as discussed above, it is not fully complete and may remain less than complete in the long

run. Grossman and Leblond (2011) argue that the financial integration is less uniform

than the EU regulation evolution would suggest. Moreover, the authors argue that one

should distinguish between regulatory and market integration, pointing out that the EU

financial market integration is lagging behind the regulatory one. Besides that, there is a

high degree of diversity in the financial development and financial sophistication among

the EU member states. As of 2013, the financial system deposit to GDP ratio ranged

from 32% for Romania to 329% in Luxembourg, the stock market capitalization to GDP

ratio - from 4% for Latvia to 119% for Luxembourg, and the stock market turnover ratio -

from 0.18% for Luxembourg to 172% for Italy2.

This diversity in financial development and sophistication together with the incomplete

financial integration may also suggest that the investment strategies of the EU countries,

as well as international portfolio choices, will differ depending on their individual financial

market’s characteristics (Calvet, Campbell, & Sodini, 2009; Feng & Seasholes, 2005;

Lane, 2000; Mendoza, Quadrini, & Rios-Rull, 2007). Heterogeneity between EU members

may mainly result in the different goals of international portfolio investments pursued

by the countries. There are two main goals of international investments: international

diversification and potentially higher returns compared to the returns on the home assets.

While it is well known that investing internationally provides opportunities for di-

versification3, investors do not use these opportunities fully. Among the reasons for

not doing so are information asymmetry (Brennan & Cao, 1997; Ahearne, Griever, &

Warnock, 2004; Van Nieuwerburgh & Veldkamp, 2009, 2010), preferences for home assets

or optimism about home assets (French & Poterba, 1991; Coval & Moskowitz, 1999; Strong

& Xu, 2003), barriers to international investments such as taxes on holding foreign assets

and transaction costs (Black, 1974; Stulz, 1981), low risk-aversion (Cooper & Kaplanis,

1994), political risk (Frankel, 1991). All these factors determine international investors’

motivation to invest abroad and, consequently, their investment strategies. Thus, for

example countries with higher risk aversion could be expected to diversify more, while

countries with lower risk aversion might exploit more risky strategies by specializing more
2The data were obtained from the World Bank Global Financial Development database.
3This point was expressed earlier by Grubel (1968), Levy & Sarnat, 1970 and Solnik (1974), and then

called into question by the increase in the correlation of assets returns by Butler and Joaquin (2002), Ang
and Bekaert (2002), and Chesnay and Jondeau (2001). Nevertheless, Ang and Bekaert (2002), Khoury
(2003), Das and Uppal (2004), Flavin and Panopoulou (2006), Driessen and Laeven (2007), and De Santis
and Sarno (2008) show that there are still benefits from international diversification.
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and forgoing the benefits of diversification. It is also documented that the investors’

wealth and risk tolerance tend to show a positive relationship (Riley Jr & Chow, 1992;

Schooley & Worden, 1996; Shaw, 1996; Grable & Lytton, 1999; Bernheim, Skinner, &

Weinberg, 2001; Hallahan, Faff, & McKenzie, 2004). Aggregated on the country level, one

might expect that richer countries may be more inclined to tolerate the risk, including

the risk related to the international portfolio.

The higher returns on the foreign portfolio as the second most important motive of

the international investments may be achieved through concentration of the portfolio on

the subset of the available financial assets or, in our case, destination countries. On the

one hand, by forming more concentrated portfolios, investors may forgo the benefits of

international diversification, while on the other they may enjoy an information advantage

by investing in a limited set of assets (Kacperczyk et al., 2005; Ivkovic et al., 2008; Huij &

Derwall, 2011). This information asymmetry between the countries with lower and higher

levels of concentration may trigger different responses to the changing macrovariables of a

destination country. This argument is also supported by the findings of Goldstein, Li, and

Yang (2014), who show that different trading opportunities of the traders in the same

market may lead to different trading motives and trading activities.

Based on the arguments above, we are going to differentiate two investment types of

countries - those countries who prefer to invest more evenly among country-destinations

(low concentration type) and those who prefer to concentrate their portfolio on a subset of

the country-destinations (high concentration type). We further expect that the portfolio

investment reallocation in response to the changes in the macrovariables may differ across

the EU countries depending on the investment type, which we formalize in the following

hypothesis.

Hypothesis 3: The changing investment environment may trigger different responses in

the international portfolio investments among the low and high concentration investment

types of the EU countries.

While the investment type of the countries, as argued above, will play a role in the

international portfolio investments, the story is not fully complete. The other side of

the investment strategy of the country-origin might be the share of the invested assets

into a particular country-destination. The investment share at the destination measures

the proportion of a source country’s total portfolio investment that is invested in the

destination country. This measure highlights the importance and exposure of a source

country to the destination countries. The hypothesis is that the investment type is driven
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by particular investment motives and considerations, while the second dimension (the

share of the portfolio a country invests in a counterparty) might be rather driven by

non-economic reasons, such as investor’s preferences for particular sectors, asset types, or a

particular country. This is motivated by previous research showing that the larger bilateral

international portfolio positions are associated with such non-economic determinants as

the informational (Massa & Simonov, 2006;Lane & Milesi-Ferretti, 2008), geographical

(Portes & Rey, 2005; Grinblatt & Keloharju, 2001), and cultural proximity (Grinblatt &

Keloharju, 2001; Beugelsdijk & Frijns, 2010; Aggarwal, Kearney, & Lucey, 2012). This

suggests that the EU members’ responses to the changes in the investment environment

may depend on the investment share at the destination. We formalize these considerations

in the following hypothesis.

Hypothesis 4: The investment share at the destination may play its role in the interna-

tional portfolio reallocation.

The time effect will also matter in our study. Brennan and Cao (1997) show that due to

the domestic information advantage of the domestic investors, investors tend to buy foreign

assets during periods when they offer high returns, and sell during the periods when they

offer low returns. This may imply that during the economic slowdown or crisis, the foreign

investors most probably will sell foreign equity investments, at the same time increasing

the investment into the debt securities as the stock-bond returns tend to decouple during

the turbulence periods (Gulko, 2002; Connolly, Stivers, & Sun, 2005). This argument

may also be consistent with the findings of Coeurdacier and Gourinchas (2011), who show

that the international equity investments are conditional on the bond returns. Moreover,

the portfolio positions could be affected considerably, as the risk-aversion rises during

the crisis (Guiso & Paiella, 2008), which is the distinctive feature of our later subsample.

While these changes in risk aversion and risk appetite during an economic slowdown have

an impact on portfolio rebalancing (Fu, 1993; Kumar & Persaud, 2002; Coudert, Gex, et

al., 2006; and Caceres, Guzzo, & Segoviano Basurto, 2010), the impact of the changing

investment environment may depend on the investment strategies of the countries since

they will differ in the level of risk tolerance in the first place.

Hypothesis 5: The EU countries’ responses to the changing macroeconomic conditions

(crisis versus no crisis) will depend on the investment type and investment share at

destination.
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3.3 Model and Methodology

There are two main goals in our analysis. Firstly, we want to study whether the EU

members’ shares of the total portfolio allocations into a particular country-destination

co-move, and to which degree these co-movements can be explained by common factors.

Secondly, we are going to investigate how the international portfolio investments of the EU

members respond to the changing macroeconomic conditions and whether these changing

conditions may receive heterogeneous responses depending on the investment strategies

employed by the EU members.

To deal with the first task, we are going to implement the principal component analysis

(PCA). The PCA will allow us to study how the co-movements of the portfolio investments

of the EU members can be explained by common factors (hypotheses 1 and 2). In particular,

we are going to study how the EU members’ share of the total portfolio investments in

the particular country-destinations can be explained by common factors, i.e. we want to

study how the shares of total portfolio investments, for example, from Austria, Belgium,

and other EU members into the Unites States, Japan, and Switzerland can be explained

by common factors. This actually implies that our variables, the co-movements of which

we will try to explain with common factors, are the EU members’ shares of the total

portfolio investments into the country-destinations and our individuals or observations

are the country-destinations4. If the EU members’ shares of total portfolio investments

move independently, then we can infer that the motivation to invest abroad is driven by

differences in characteristics of the country-origins (e.g., preferences for investing into a

particular country may differ across the countries due to heterogeneity in the historical,

cultural and economic linkages between the country-origin and country-destination). If

they move together, then we can infer that portfolio investments originated from the EU

countries are subject to the common driving forces.

To test hypotheses 3, 4 and 5, we develop a dynamic panel model, which includes

both macroeconomic variables and the uncertainty of these macroeconomic variables in

a given year, since uncertainty will play a crucial role in the international investment

decision. Our basic dynamic panel model of international portfolio investment positions is

represented by equation (3.1).
4We restrict our sample of the destination side. We disregard those observations where the investment

destination is either territories with special rights, separate financial centers, or international organizations,
since we want to study how the common factors of the investment environment (or in other word,
macroeconomic conditions) drive the co-movements of the portfolio investments rather than such motives
as tax-evasion, which may have a high explanatory power for the financial centers, for example.

107



Yi,j,t = α + ρYi,j,t−1 + β′Xj,t + µi,j + ηt + ei,j,t, (3.1)

where subscripts i, j, and t denote the country of origin, the country of destination, and

time respectively. Yi,j,t is the vector of dependent variables; Yi,j,t is the vector of either

the logarithm of the ratio of total portfolio assets, equity securities, or debt securities

invested by country i into country j in year t evaluated at the market value to GDP.

Yi,j,t−1 is the vector of the logarithm of the portfolio investment to GDP ratio in the

previous year, and it is included in the estimation equation in order to take into account

the persistence of the series. Xj,t is the matrix of control variables for country j in year t

and consists of the following variables: short-term interest rate and standard deviation

of short-term interest rate, long-term interest rate and standard deviation of long-term

interest rate, stock index and standard deviation of stock index, stock index growth and

standard deviation of stock index growth, unemployment rate and standard deviation of

unemployment rate, consumer price index growth and standard deviation of consumer

price index growth, real effective exchange rate, GDP growth, the ratio of current account

to GDP, and government debt to GDP ratio. µi,j represents the vector of unobservable

fixed effect between countries i and j such as culture, history, geography, economic or

social interconnection. ηt denotes the vector of common time-specific unobservable effects.

ei,j,t is the vector of the error term with zero mean and constant variance.

Several econometric problems are of potential concern with the estimation of equation

(3.1). First, our model is a persistent series, and the first lag of the dependent variable

may give rise to autocorrelation in the error term. Second, the time-invariant fixed effect

can be correlated with other explanatory variables and omitting it would lead to bias.

Third, there is a large number of source-destination pairs and a short time span. Fourth,

our panel data are imbalanced, and the macro variables in our model are endogenous in

the sense that the right-hand variables and the dependent variable affect each other.

The endogeneity problem implies that changes in the portfolio flows move short- and

long-term interest rates: the outflows move rates up because fewer funds are available for

borrowing (i.e., excess demand for money increases) and inflows move them down (Kouri

& Porter, 1974; Warnock & Warnock, 2009), but changes in the short- and long-term

interest rates also determine the decision to invest. Fluctuations in portfolio outflows

and inflows also contribute to the fluctuations of the short- and long-term interest rates
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and, conversely, fluctuation in the interest rate affects investment decisions. The increase

in the interest rate results in an increase in the borrowing costs of the economic agents

and the firms’ decision to hire new workers which raises the unemployment rate. The

higher unemployment rate results in lower GDP growth, which is reflected in the asset

returns. This also implies that the changes in interest rates affect government debt through

borrowing costs, making government debt also endogenous.

The same reasoning can be applied to the stock index and growth of stock index:

the higher demand for domestic assets (the increase in the portfolio inflows) moves asset

prices up (capital gains will also move up), and portfolio reshaping will also contribute to

the asset price fluctuations and uncertainty about returns. We also consider the current

account to GDP ratio to be endogenous, since the capital inflows also increase the current

account deficit. The increase in government debt increases the demand for funds and

increases borrowing costs of the agents, which moves the interest rates. This reasoning

implies that through the changes in the interest rates, the government debt will also be

endogenous.

To overcome these econometric issues, we use the system dynamic panel GMM estimator

developed by Arellano and Bond (1991) and extended by Blundell and Bond (1998). To

solve the endogeneity problem, Arellano and Bond (1991) suggest using the lags, starting

from the second one, as instruments for the endogenous variables in the first difference

equation. The system dynamic panel provides efficiency by estimating both the equations

in levels and in the first differences. In the equation in the levels, the estimator uses the

lags of first differences of the endogenous variables, while in the equation in differences,

the second lag of the endogenous variables is used as an instrumental variable. For the

lags and the lags of first differences of the variable to be the appropriate instruments for

the endogenous variables, the following conditions should hold:

For the equation in levels:

E[∆Yi,j,t−1(µi,j + ei,j,t)] = 0 and E[∆Xj,t−1(µi,j + ei,j,t)] = 0 (3.2)

For the equation in first differences:

E[Yi,j,t−2∆ei,j,t] = 0 and E[Xj,t−2∆ei,j,t] = 0 (3.3)
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for t≥35.

In order to test hypothesis 3, we are going to differentiate between two investment

types - high- and low-concentration types. In order to do that, we use the approach

of Kacperczyk et al. (2005) to construct the concentration index. We calculate the

concentration index according to the following formula:

CIi,t =
N∑
j

(ωi,j,t − ωj,t)
2, (3.4)

where ωi,j,t is the share of total portfolio investment assets of country i invested into

country j in year t and ωj,t
6 is the average share of total assets invested in country j by

the EU members7.

Our concentration index should reflect how the portfolio of a particular country deviates

from the benchmark portfolio. If we find evidence supporting hypothesis 1 about the

common factors driving the EU members’ shares of portfolio investments, the average

share of the total international portfolio investments into a particular country-destination

may be perceived as representative for the EU. Thus, any deviation from this benchmark

can signal the country-origin’s investment preferences or investment strategies.

There are two main reasons for using this index. First, it is adjusted for a country’s

attractiveness for investments (i.e. if the country is perceived to offer better investment

opportunities, the average weight of investments in this country will be higher). Second,

it takes into account the time-varying optimal investment share. The second feature is

especially topical during periods of turbulence since the flight to quality and higher capital

inflows into such countries as Germany and the United States are very likely. Thirdly, by

squaring the deviation of the invested share from its mean we guarantee that positive and

negative deviations from the mean do not cancel each other8.

5Although the longer lags are also valid instruments in the system GMM, we use only the first lag of
differences in the level equation and the second lag of the endogenous variables in the difference equation.
By doing this, we restrict the number of instrumental variables, since Roodman (2009) shows that even
being valid separately, the large number of instruments can collectively be invalid because they may
overfit endogenous variables.

6To calculate the concentration index, we exclude such destinations marked in CPIS as “International
Organizations + SEFER (CPIS)", “International Organizations", “Other Countries Confidential", and
“Other Countries, not Specified".

7After merging different data sets and due to data limitations of some macro variables, the set of
destination countries includes Australia, Austria, Belgium, Bulgaria, Canada, Hong Kong, Denmark,
Finland, France, Germany, Hungary, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway,
South Africa, Spain, Sweden, Switzerland, United Kingdom, and United States.

8To show the argument more explicitly, let us consider the following example. Suppose the allo-
cation choice is limited only to country-destinations X, Y , and Z. The average investment shares
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Once the concentration index is calculated for all sample countries, the countries are

classified either as a high- or low- concentration type. Countries with a concentration

index equal to or higher than the 65th percentile are classified as high-concentration. The

low-concentration investment types are those countries with the concentration index equal

to or below the 35th percentile9. The time trend of the concentration index is shown in

Figure 1.

In order to test whether high- and low-concentration types differ in their responses

to the changes in the macroeconomic variables, we modify equation (3.1) and estimate

equation (3.5):

Yi,j,t = α + ρYi,j,t−1 + β′Xj,t + γ′dlow ∗Xj,t + ηt + ei,j,t, (3.5)

where dlow is a dummy variable and equals 0 if the data come from the sub-sample of the

high concentration type and 1 if the data are for the sub-sample of the low concentration

type. The significance of γ’s estimates will provide evidence that the two investment types

differ in the responses to the macro variables.

In order to test hypothesis 4, we further re-estimate our full specification model in

equation (3.5) for the separate sub-groups, depending on the investment share at the

destination. For these purposes, we divide the sample into the subset of the destination

countries with the share of invested assets equal to or below 1 percent, in the range

between 1 and 7 percent, and equal to or above 7 percent10.

In order to test hypothesis 5, we are also going to consider two separate time periods:

the pre-crisis period of years 2001 to 2006 and the crisis period of 2007-201011.

into these countries are presented by the vector [ω̄X = 0.5; ω̄Y = 0.3; ω̄Z = 0.2]. The allocation de-
cisions of country A and country B into these destination countries are presented by the vectors[
ωA
X = 0.6; ωA

Y = 0.4; ωA
Z = 0.0

]
and

[
ωB
X = 0.2; ωB

Y = 0.5; ωB
Z = 0.3

]
respectively. Country B clearly

deviates from the average investment shares more for every destination country and our concentration
index confirms this - CIA = 0.06 < CIB = 0.14. The deviation in both sides is important, given the
fact that all the shares should sum up to one, by investing more heavily into country Y in our example,
country B has also to invest less into country X. The simple sum of the deviation from the mean (without
squaring) would give 0 for both.

9To group low- and high-concentration types, we also considered approaches of dividing the sample
based on the 25th and 75th percentiles, or the 30th and 70th percentiles, but our empirical results
qualitatively do not change. In this study, we are presenting the results from grouping based on the
principle of the 35th and 65th percentiles, since we believe such an approach is most objective: an
average (“normal", “standard", or “representative") country will have the index within the 35th and 65th
percentiles, while those countries which significantly differ from an average country will fall out of these
bounds.

10This division does not have any theoretical background, but this way of grouping also allows us to
divide the sample into the more or less equal sub-samples.

11Although the crisis fully evolved in 2008, the first warning signals were already observed in 2007.
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3.4 Data and Main Variables

Main Data Sets

We use several data sources in our study, among which are the Coordinated Portfolio

Investment Survey (CPIS), World Economic Outlook (WEO), and IMF International

Financial Statistics (IFS) and Global Data Source (GDS).

CPIS

The data on the international investment positions are obtained from the Coordinated

Portfolio Investment Survey (CPIS), in which data are available on an annual basis since

2001. The CPIS is the database collected by the IMF on the voluntary provisions by the

countries. The data set provides bilateral cross-country data for individual countries, i.e.

the international portfolio investment of country i in country j, in addition to the global

(aggregated) annual data. Data are available for the total portfolio investment positions

and are also broken down by asset type: equity securities and debt securities. For debt

securities, data are further classified into long- and short-term debt.

The CPIS data provide two dimensions - the asset side and the liability side - for total

portfolio assets, equity and debt securities. For both of the dimensions and for every

concept (i.e. every class of assets provided by the database), the CPIS contains two data

entries. The asset side data represent residents’ holding of securities issued by nonresidents

(outward investment), i.e., portfolio investment by country i in country j is recorded as

portfolio investment assets of country i. The liability side data include securities issued

by residents and owned by nonresidents (inward investment), i.e., portfolio investment by

country j into country i is recorded as portfolio investment liabilities of country i12.

The cross border positions collected on an economy’s holdings (i.e. from the assets

side) are usually considered to be more reliable since the holder (investor) most probably

will know what securities in each country he holds. These entries in the CPIS data set are

defined as the asset side. On the other hand, the issuer of the security may not always

know the residence of the holder (investor) since the securities might be held not directly

by the investor but rather through an intermediary. Given that the asset side is believed

Since investors tend to overreact to negative news, we consider 2007 as being the first year of financial
crisis.

12Not all the participants of the CPIS report the liability side. Nevertheless, the IMF derives the
liabilities of non-reporters using the data collected by CPIS participating economies. If country i does
not report its liabilities to country j, but country j reports its investments in country i, the missing value
on the liability side of country i (due to non-reporting) is substituted with the data reported by country
j and defined as “derived liabilities”.

113



to be more precise, for our analysis we use the asset side of the CPIS database.

In our analysis we consider three concepts from the CPIS data set: total portfolio

investments, portfolio investments into equity, and portfolio investments into debt securities.

For our analysis, we focus on the yearly data on the portfolio investments of the European

Union members as the country-investors. The set of countries includes Austria, Belgium,

Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany,

Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands,

Poland, Portugal, Romania, the Slovak Republic, Slovenia, Spain, Sweden, and United

Kingdom. For all of the countries except Latvia, Lithuania, and Slovenia we have the

data for the full time span of years 2001-2014. The data on the portfolio investment

for Latvia are available from 2006 and for Lithuania and Slovenia starting from 2009.

As a consequence, in our PCA analysis of the investment shares co-movements (where

the investment share was calculated as the ratio of portfolio investment into a particular

destination to the total sum of portfolio investments), we exclude Latvia and Lithuania

for 2001-2005 and Slovenia for 2001-2008.

The CPIS data set has quite a substantial number of missing values, which would

make it impossible for us to implement the PCA. To overcome this problem, we proceed

in the following way. Firstly, for each country and each year we sum up all the investment

shares over all destinations. If the weights sum up to at least 0,999999, we replace the

missing values with 0. Although the IMF instructs participating countries to report 0

in case of no investments and missing values in case of non-available data, our analysis

shows that the weights over all destinations sum up to 1 in the majority of cases, which

implies that some countries just leave the entry empty even when there is no investment

in a country-destination. We also allow a threshold of 0,999999 to be equivalent to 1 since

the portfolio investments below a certain level are entered as 0 in the CPIS data set. For

those observations, for which the investment share weight in a particular year sums up

to lower than 0,999999, we take the average country’s share at the destination over the

whole time span and substitute the missing value.

The data show that the aggregated portfolio investments of all the EU members were

steadily growing over time up to 2007 (Figure 3.2). In 2008 there was a sharp decrease in

the total portfolio investment, which we explain as the response to the global financial

crisis. We also observe the recovery in the total portfolio investments starting from 2009.

Nevertheless, there is evidence of crisis impact persistency on the portfolio investments of

the EU members, since the aggregated portfolio investments recovered to the level of 2007
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Figure 3.2: Total portfolio investments of the EU members, trn US dollars
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only by 2013.

Figure 3.3 depicts the country destination by the amount of total portfolio investments

from the EU members as of 2014. The top main destination countries (in the descending

order) as of 2014 are United States, Luxembourg, France, Germany, United Kingdom,

Netherlands, Italy, Ireland, Spain, and Japan. Such countries as the United States,

Germany, United Kingdom and France always preserve their top 5 positions as country-

destinations over the whole time span, which is consistent with the expectations that

these countries are considered to be a safe haven. At the same time, we also see that Italy

is among the top five destination countries during 2001-2006. During 2007-2008 Italy is

replaced by Luxembourg as the destination country, which we explain as a result of the

economic troubles facing Italy as the crisis evolved.

IMF IFS and GDS

The IMF International Financial Statistics (IMF IFS) database provides data on

exchange rates and real exchange rates, money and consumer prices, commodity prices,

trade and production, government finance, interest rates, the balance of payments and key

national accounts aggregates for around 200 countries and regional groups. The database

is available at the monthly and quarterly frequencies. From the IFS database we retrieve

the quarterly data on seasonally adjusted CPI and relative effective exchange rates. We

gather the quarterly data of the short- and long-term interest rates, stock index, and

unemployment rate from the Global Data Source (GDS) data set.
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WEO

The World Economic Outlook Database (WEO) contains the selected macroeconomic

data series such as national accounts, inflation, unemployment rates, balance of payments,

fiscal indicators, trade for countries and country groups (aggregates), and commodity

prices, and covers more than 180 nations. The data are available at the yearly frequency

and collected as times series from 1980 onwards. From this data set we collect the annual

data on GDP, government debt, and current account balance.

Control Variables

The set of control macroeconomic variables includes short-term interest rate, long-term

interest rate, stock index, growth of stock index, unemployment rate, the growth of

seasonally adjusted consumer price index (inflation), real effective exchange rate, GDP

growth, the ratio of current account to GDP, and government debt to GDP ratio13. To

take into account the uncertainty associated with the macro variables, we also include the

standard deviations during a given year of such variables as short- and long-term interest

rate, stock index and growth of stock index, unemployment rate and seasonally adjusted

consumer price index growth.

We include the short-term interest rate because it can signal market liquidity (Bomfim

et al., 2003; Chordia, Roll, & Subrahmanyam, 2001) and reveal the spread and the cost of

offsetting the position by the security issuer or trader (Aiyagari & Gertler, 1999). The

change in the short-term interest rate results in the profitability of the investment and

subsequently in the motivation to invest in or withdraw from a country. Besides, a change

in the short-term interest rate may be perceived as a change in monetary policy and an

increase (decrease) in interest rates pushes stock prices and yields to maturities down

(up) (Rigobon & Sack, 2004), which results in portfolio outflows (inflows). The standard

deviation of the short-term interest rate will proxy for the uncertainty of market liquidity.

Long-term interest rates are usually used by investors to discount the future cash flows

that determine asset prices. Thus, a change in the long-term interest rate results in asset

price movements and capital gains or losses from the investments, while the volatility of

long-term interest rates contributes to the risk of asset returns. Gagnon, Raskin, Remache,

Sack, et al. (2011) show that a decline in the long-term interest rate may signal a reduction

in the risk premium, which will also have an impact on portfolio withdrawals.

13The data sources and construction of all the variables are provided in Table 3.4.
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Because our dependent variable is the international portfolio investment position -

total portfolio assets, equity securities, or debt securities - at market value, we also include

the change in the stock index which should control for the changes in the asset valuations14

as well as for the changes in the position itself. The standard deviation of the stock index

is used to control for the volatility of the asset prices.

It might be pointed out that stock index is not perfect proxy for asset valuation

changes, but we believe that our inference can withstand this critique since, in empirical

analyses of portfolio allocation, there is always a dilemma of how to treat valuation

changes15. In estimating the impact of international portfolio investment positions, it

is important to separate valuation changes from actual changes in investment positions.

Simply taking a difference of two time series end-period investment positions does not

fully reveal information on a country’s investment strategy because these data include

changes in asset prices (valuation changes). Asset price changes could mask the actual

transaction values, especially when the market is volatile, and could lead to a misleading

interpretation of shifts in investment positions. In order to measure valuation changes,

detailed data such as asset type, maturity, and prices are necessary. However, it is difficult

to make an an accurate estimation of valuation changes, mainly due to the lack of such

data. The IIP and CPIS data provide information on the broad composition of assets

held in the form of equity and debt securities, but they do not provide details such as

maturity and currency. Also, data on returns and bond indices are limited. One way

to handle valuation changes is to include macroeconomic variables that proxy volatility

in estimation equations16. Interpretations of these variables are as follows. The first is

to consider valuation changes as noise in the market and inclusion of macroeconomic

variables as control variables can separate out the noise. The second is to view asset

prices as being part of the outcome of the portfolio allocation decision. When demand

14We are aware of the fact that a bond market index might be a better proxy for debt asset valuation
changes, but the data on bond indices are too scarce, which makes our sample too small and can bias
results. On the other hand, the correlation between stock and bond prices was established by previous
research and was shown to be time-varying. Among the factors determining the sign of stock-bond
return correlation (Andersson, Krylova, & Vähämaa, 2008; Chiang & Li, 2009; Li, 2002) are inflation
expectations, stock market uncertainty, and interest rate. By including such variables as consumer price
index and standard deviation of the stock market, we control for the time-varying component of stock
and bond price co-movements.

15We would like to acknowledge the helpful advice from Steven Phillips who suggested raising the
important issue of valuation changes.

16This is actually taken into account in our estimation model by inclusion of the standard deviations
of the short- and long-term interest rates, stock index and stock index growth, unemployment and CPI
growth.
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for a certain type of asset increases, its price goes up as a consequence of that portfolio

choice, so that portfolio reallocation is achieved in part by valuation changes, rather than

by actual flows.

Figure 3.4: Standard deviation (SD) of returns on portfolio investments

A. SD of returns on debt securities B. SD of returns on equity securities

Investors’ decisions to invest or disinvest are also influenced by the returns they earn

from investing in a particular country (Brennan & Cao, 1997). The bilateral data on

the portfolio returns are not available, but the balance of payments provides the total

income on the portfolio investment for a country. We construct a new variable, which is

calculated as the yearly portfolio income divided by the assets at the end of the previous

year, and call it the returns on assets. This variable should measure the profitability of

countries’ portfolio investments, while the standard deviation is supposed to signal the

risk of the investments.

Figure 3.4 depicts the relation between the standard deviation of returns and the

concentration index. Firstly, comparing our measure of returns on assets for the debt and

equity assets, we see that the standard deviation of our return on assets measure is higher

for equity investments, which is fully consistent with standard finance theory. Secondly,

one might observe that for both debt and equity securities, both concentration types can

experience high and low volatility in their investment returns and we do not find any clear

evidence of any of the investment types being more risky than the other. We explain this

by the absence of the difference in the riskiness of the investment types, which is in line

with previous research that the concentration may help to build the information advantage

(Huij & Derwall, 2011; Ivkovic et al., 2008; Kacperczyk et al., 2005) and if so there might

be no increase in the risk relative to a more diversified portfolio. Our second explanation
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is the aggregation of the data and as a result some of the more risky investment strategies

of the country (employed, let’s say, by institution investors) may be offset by low risk

investment strategies (employed by individual investors). We would like to do a deeper

analysis in this direction, but due to the data limitation we are restricted from doing so.

Since the bilateral data on the portfolio returns are not available, in order to control

for the attractiveness of the investments we use instead the growth of the stock index. The

inclusion of the growth of the stock index is motivated by the fact that passive strategies

are optimal and one cannot outperform the market (Malkiel, 2003; Monnier & Rulik,

2012). The standard deviation of the growth of the stock index will also be a proxy for

the risk of returns.

The unemployment rate is included as a leading indicator of stock performance, because

the higher unemployment today implies lower GDP tomorrow and, as a result, lower

stock returns (Boyd, Hu, & Jagannathan, 2005; Flannery & Protopapadakis, 2002); the

standard deviation of the unemployment rate will also reflect the uncertainty of the stock

performance. Inflation is included as a lagging indicator for the security analysis; the

standard deviation of this variable should also take into account the risk of the asset

returns.

As one of the explanatory variables, we also include the government debt to GDP

ratio. An increase in government debt drives up the demand for financing, which results

in higher interest rates and consequently in higher borrowing costs, lower profit margins,

and lower returns on assets. Moreover, an increase in the government debt motivates the

government to increase the government bond supply which affects, as shown by Greenwood

and Vayanos (2014), market liquidity and the returns that investors require.

In our analysis, we also use the time dimension because investing countries face different

global macroeconomic conditions. We provide evidence in Figure 3.5 which represents the

comparison of distributions of the main variables used in the analysis, before and after

the crisis.

As one would expect, the mass of distribution of short-term interest rate shifts towards

the right, which implies that more of the destination countries were facing liquidity

constraints that pushed the short-term interest rate upwards. What is interesting is that

there was also a shift of the mass of the distribution to the left. We believe that could

happen due to capital reallocation whereby some countries enjoyed capital inflows as the

result of “flight-to-quality". This hypothesis can also be supported by the leftward shifts

of the mass in the long-term interest rate, which can proxy for the yields on long-term
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government debt instruments. The increased demand for these instruments could push

prices up and yields (long-term interest rate) downwards. These shifts also tell us that

the countries became more heterogeneous in the level of short- and long-term interest

rates during the crisis.

We also find the evidence of shift of the distribution to the left of such variables as the

unemployment rate, consumer price index growth, government debt to GDP ratio, while

there is also the evidence of the shift to the right of the mass of the distribution of the

stock index growth and GDP growth. Figure 3.5 also gives evidence of an increase in all

our measures of risk: there was a shift to the right in the mass of the distributions of such

variables as the standard deviation of short- and long-term interest rates, the standard

deviation of stock index and stock index growth, the unemployment rate and inflation.

3.5 Results

3.5.1 Common Factors in the Co-Movements of Investments Shares

In order to test hypotheses 1 and 2 we employ the principal component analysis (PCA),

the estimation results of which are provided in Table 3.1 and Figure 3.6 Panel A. The

table contains the proportion explained by each of the first three principal components

and the cumulative proportion explained by the first two and three factors respectively

and the number of observations used for the analysis.

The PCA shows that the EU members’ shares of total portfolio investors into different

destinations are moving together to a considerable extent. For the whole sample, covering

from 2001 to 2014, the proportion of the co-movements explained by the first component

is 59,66% (Table 3.1, Panel A). The first three principal components can explain up to

70,91%. We also further consider the time evolution of the proportion of the EU members’

investment shares explained by the common factors components.

From Figure 3.6 Panel A we can observe the following trends of the evolution of the

proportion of the co-movements explained by the first three principal components from

2001 to 2014. The proportion explained by the first three principal components stays

approximately the same over 2001-2005. While the minimum proportion explained by the

first common factor for this period is 63,21%, the first three common factors can explain

at least 78,16% of the co-movements in the shares of total portfolio investments during

this period. We also observe a decline in explanatory power of the first and first three
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Figure 3.6: Co-movements of the EU members’ investments shares
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Table 3.1: Co-movements of the EU members’ investments shares, all destination
countries

Principal
component

Year
Proportion, %

N obs. Year
Proportion, %

N obs.
expl. cum. expl. cum.

PC1
2001-2014

57,66 57,66 3280
PC2 7,96 65,62
PC3 5,29 70,91
PC1

2001
63,21 63,21 233

2008
58,64 58,64 235

PC2 9,63 72,83 9,30 67,97
PC3 7,38 80,21 5,84 73,78
PC1

2002
63,74 63,74 233

2009
58,88 58,88 235

PC2 8,36 72,10 8,34 67,23
PC3 7,17 79,27 7,04 74,27
PC1

2003
63,51 63,51 234

2010
60,28 60,28 234

PC2 8,74 72,25 9,87 70,14
PC3 7,34 79,59 6,46 76,60
PC1

2004
64,18 64,18 234

2011
57,77 57,77 235

PC2 71,96 71,96 10,18 67,95
PC3 78,16 78,16 6,42 74,37
PC1

2005
64,69 64,69 234

2012
59,10 59,10 235

PC2 7,93 72,63 11,02 70,12
PC3 6,04 78,66 6,39 76,12
PC1

2006
61,19 61,19 234

2013
59,16 59,16 235

PC2 8,33 69,52 11,05 70,21
PC3 5,85 75,38 6,02 76,23
PC1

2007
59,57 59,57 234

2014
62,18 62,18 235

PC2 10,41 69,98 12,02 74,20
PC3 5,59 75,57 5,44 79,63

common factors in 2006. It might result from the increase in risk appetite before the

crisis and extra profit seeking (González-Hermosillo, 2008). As a result, the EU member

countries were less aligned in their choices of the portfolio reallocation.

During the main crisis period of years 2007-2008, we observe a further decrease in the

ability of the first principal component and the first three principal components to explain

the co-movements of the EU members’ shares of total international portfolio investments.

This may result from the higher segregation of the EU members during the crisis.

Starting from 2009 we observe the tendency towards the increase in the role of the

first three principal components in the co-movements of the EU members’ investment

shares, but the pre-crisis explanatory power of the first principal components were not

reached even by 2014.
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As can be noticed from Figure 3.3, among the main destination countries are the EU

member states themselves. Consequently, one may argue that our results that the shares

of the total portfolio investments are driven by the common factors are solely due to the

fact that a significant portion of portfolio investments in our sample are directed to the

member states themselves. In order to test the robustness check, we firstly, divide our

sample into a sub-sample consisting of the non-EU member destination countries and

the EU member destination countries. After that, we repeat our PCA analysis for both

sub-samples separately, the estimation results of which are presented in Table 3.2 and 3.3

and Figure 3.6 Panel B and Panel C respectively.

The estimation results on the sample consisting of the non-EU member destination

countries (Table 3.1) confirm our previous finding, discussed above. Moreover, we also

obtain evidence that the co-movements of the investment shares into non-EU member

countries are even stronger compared to the whole sample. For this sub-sample, we observe

a stable explanatory power of the first three principal components of the investment shares

co-movements till 2003. There was a slight decrease in the ability of the first and the

first three principal components to explain the investment shares’ co-movements in 2004,

which we explain with the accession of the new EU members. The highest decrease in the

degree of the co-movements of the investments shares was found in 2007, which we explain

with the high turbulence in the market in response to Lehman’s failure in September 2007.

In the after crisis period, we observe a tendency towards an increase in the first principal

component to explain the investment shares co-movements, which rises from 75,92% in

2009 to 81,60% in 2014. At the same time the proportion explained by the first two and

the first three components remains more or less stable over this period. This suggest that

the EU members’ portfolio investments into the non-EU member countries became more

aligned.

Table 3.3 and Panel C of Figure 3.6 contain the results for the sub-sample with the

EU destination countries. Due to the fact that we want to study the principal components

driving the portfolio investment from the EU members into the EU members, we cannot

do it separately for each year, since by doing so we would have too few observations17.

Thus, we study three sub-periods: 2001-2006, 2007-2010, and 2011-2014 respectively.

From the estimation of the EU member destination countries (Table 3.3), we further

17For the stable solution in the PCA, it is usually required that there are at least 5-10 observations per
each variable (Bandalos & Boehm-Kaufman, 2009; Bryant & Yarnold, 1995; Garson, 2008; MacCallum,
Widaman, Zhang, & Hong, 1999; Velicer & Fava, 1998).
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Table 3.2: Co-movements of the EU members’ investments shares, non-EU destination
countries

Principal
component

Year
Proportion, %

N obs. Year
Proportion, %

N obs.
expl. cum. expl. cum.

PC1
2001-2014

68,23 68,23 2902
PC2 6,77 75,00
PC3 4,10 79,10
PC1

2001
78,20 78,20 206

2008
76,44 76,44 208

PC2 6,58 84,78 10,07 86,52
PC3 5,01 89,80 4,30 90,81
PC1

2002
78,56 78,56 206 2009 75,92 75,92 208

PC2 8,13 86,70 11,79 87,71
PC3 4,34 91,04 3,82 91,53
PC1

2003
79,61 79,61 207 2010 75,83 75,83 207

PC2 6,18 85,79 10,91 86,74
PC3 5,10 90,89 4,21 90,95
PC1

2004
75,73 75,73 207

2011
75,39 75,39 208

PC2 6,61 82,34 9,15 84,53
PC3 4,67 87,01 3,77 88,30
PC1

2005
77,11 77,11 207

2012
78,07 78,07 208

PC2 6,82 83,93 8,68 86,75
PC3 5,62 89,57 4,10 90.85
PC1

2006
73,49 73,49 207

2013
79,85 79,85 208

PC2 13,12 86,60 5,27 85,12
PC3 4,08 90,69 4,55 89,66
PC1

2007
71,73 71,73 207

2014
81,60 81,60 208

PC2 10,53 82,26 4,82 86,42
PC3 7,20 89,46 3,61 90,03
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Table 3.3: Co-movements of the EU members’ investments shares, EU destination
countries

Principal component Years
Proportion, %

N obs.
expl. cum.

PC1
2001-2014

53,95 53,95 378
PC2 11,59 65,54
PC3 7,05 72,60
PC1

2001-2006
59,31 59,31 162

PC2 9,05 68,36
PC3 7,47 75,83
PC1

2007-2010
53,99 53,99 108

PC2 12,97 66,95
PC3 8,06 75,01
PC1

2011-2014
53,48 53,48 108

PC2 14,55 68,02
PC3 7,15 75,18

find evidence that the common factors are important in the co-movements of the EU

members’ share of total portfolio investments. The proportion explained by the first

principal component varies from 53,48% to 59,31% and the proportion explained by the

first three principal components varies from 75,18% to 75,83%. Firstly, although the

common factors are still very important for this sub-sample of the country destinations, we

observe that the co-movements are lower than those for the non-EU destinations countries.

Secondly, we also find that the impact of the crisis on the explanatory power of the first

three principal components is not so strong compared to the sub-sample consisting of the

non-EU destination countries: there was an almost negligible decrease in the proportion

of investment shares co-movements explained by the first principal components, from

59,31% in the pre-crisis period to 53,99% in the crisis period, and further decrease in

the post-crisis period to 53,48%. There was also a small change in the proportion of the

investment shares co-movements explained by the first three components: from 75,83%

in the pre-crisis period to 75,01% in the crisis period and subsequently to 75,18% in the

post-crisis period. We have two explanations for this. Firstly, the EU countries may

perceive the EU members’ financial markets as the home markets. As a result, the crisis

may not have so big an impact on the international portfolio reallocation within the EU

members.

We also have one more explanation for the heterogeneous explanatory power of the

common factors in the EU members’ shares portfolio investments between the sample
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with the non-EU member destination countries and that of the EU member destination

countries. While the EU members most probably face equal access to the financial markets

outside of the union, the preferences for the EU member destination countries can be

driven by tighter links due to historical or cultural reasons, geographical or informational

proximity (Aggarwal et al., 2012; Beugelsdijk & Frijns, 2010; Grinblatt & Keloharju,

2001; Lane & Milesi-Ferretti, 2008; Portes & Rey, 2005). For example, such countries

as the Czech Republic and Slovakia may be more inclined to invest into each other as

these countries used to be a single country. The Vysegrad group18 of countries may also

be more likely to invest into each other as the consequence of the higher economic and

cultural cooperation between the group members. That is why the portfolio investments

preferences into the EU member destination countries may be more heterogeneous among

the EU members. Moreover, as is argued in the European Financial Integration Report

of 2009 (The European Commision, 2009) the investors showed a tendency to focus on

the home markets during the high turbulence. If that is the case and for the reasons

mentioned above, the Slovak investors, for example, may perceive the Czech financial

market as a home one and their responses to the changing macroeconomic conditions in

the Czech Republic might differ from, let us say, those of Swedish investors.

3.5.2 Responses of the Portfolio Investments to Changing Macroe-

conomic Conditions

Firstly, we compare our concentration index before and during the crisis (Panel A and

Panel B of Figure 3.7 respectively). Figure 3.7 supports our results from the PCA. Firstly,

we see that the concentration index is more skewed to the right in the pre-crisis period,

which implies that during this period the portfolio investments of the EU members do not

deviate much from the average investment shares at the destination. This might serve as

further evidence that the portfolio investments of the EU countries are more aligned and

show a high degree of co-movements. At the same time, we observe high dispersion in the

concentration index in the pre-crisis period, which can serve as further evidence of the

diversity of the EU member countries’ investment preferences or investment strategies.

During the crisis, the distribution becomes less skewed to the right and also more

dispersed. Firstly, the increase in the dispersion would result from the lower correlation
18The Visegrad Group is also known as Visegrad Four or V4 consist of the Czech Republic, Hungary,

Poland, and the Slovak Republic, the main goal of cooperation among which is to assist each other in the
number of common interests within the EU integration.
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Figure 3.7: Distribution of concentration index before and during the crisis
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of the portfolio allocation during the crisis, which is also in line with our PCA results.

Secondly, the increase in the kurtosis during the crisis results from the shift of the mass

of the distribution a little to the right, which may signal the divergence of the portfolio

allocation. This is also consistent with our finding of the PCA of the decreases in the

explanatory power of the common factors for the sub-sample of the EU member destination

countries. Moreover, by construction of the concentration index, the rightward shift

may happen if the countries re-allocated their portfolios employing different investment

strategies and deviating more from the mean region portfolio19.

The estimation results of our full specification model from equation (3.5) for the full

time span (2001-2010) are presented in Table 3.8. The first three columns (columns 1, 2,

and 3) of the table provide the estimates of equation (3.5), where the dependent variable

is total portfolio investment assets, assets invested in equity securities, and assets invested

in debt securities respectively. The last three columns (columns 4, 5, and 6) are the

estimates of γ’s from equation (3.5).

Tables 3.9, 3.10, and 3.11 represent the estimation results of equation (3.5) for the full

time span but for the subset with the share of invested assets equal to or below 1 percent,

in the range between 1 and 7 percent, and equal to or above 7 percent, respectively.

Tables 3.12–3.15 provide the estimation results for 2001-2006 using the full sample, and

19Our investment type measure (or concentration index) is time-dependent. Depending on the concen-
tration types, we can distinguish five kinds of country-investors: 1) a country that before and during the
crisis is high type; 2) a country that before and during the crisis is low type; 3) a country that is high
type before the crisis, but low type during the crisis; 4) a country that is low type before the crisis, but
high type during the crisis; 5) a country that changes its type in both pre-crisis and crisis periods. The
classification of countries according to this principle is provided in Table 3.5.
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the sub-samples with the share of invested assets below or equal to 1 percent, between 1

and 7 percent, and equal or above 7 percent, respectively. Tables 3.16–3.19 contain the

estimation results for 2007–2010 for the full sample, and with a share of invested assets

less or equal to 1 percent, in the range of 1 and 7 percent, and equal to or above 7 percent,

respectively . We also provide the map for the significant γ’s and their signs for the full

time span, for 2001-2006, and for 2007-2010, respectively, in Tables 3.20, 3.21, and 3.22.

The estimation results can be summarized as follows. First, the investment type

determines the changes in international portfolio investment positions in response to the

changes in the macroeconomic variables. Whenever the estimates are negative for the

high-concentration type, they are less negative or positive for the low-concentration type,

and, vice versa: whenever the estimates are positive for the high-concentration type, they

are less positive or negative for the low-concentration type. This result is in line with

the finding of Goldstein et al. (2014), showing that different trading motives, which stem

from different trading opportunities may lead to the opposite direction in response to the

same information in the same markets. We also find that the share of invested assets also

triggers different responses to the changes in the macro variables: on average, there are

more differences in the responses for the sub-samples with shares smaller than 7 percent.

This is consistent with the finding that higher international portfolio positions can be

rather explained by non-economic determinants such as history, culture, and geography

(Aggarwal et al., 2012; Beugelsdijk & Frijns, 2010; Grinblatt & Keloharju, 2001; Lane &

Milesi-Ferretti, 2008; Portes & Rey, 2005). The time dimension also plays a role: the

low and high-concentration types differ in the responses to the macro variables in the

pre-crisis and during the crisis periods, but the sets of the variables in which they differ

are not the same in the pre-crisis and crisis periods.

Effect of Investment Type

From the estimation of equation (3.5) with the full sample (Table 3.8), we find that

the responses of the high- and low-concentration types are different to variables that

represent economic growth. The variables include stock index and growth of stock index,

inflation and standard deviation of inflation, real effective exchange rate, GDP growth,

debt-to-GDP ratio, and standard deviation of long-term interest rate. In particular,

• The stock index is significant and negative for the high-concentration type, while

the interaction term is positive for the low-concentration type. This implies that the
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low-concentration type reacts more positively to a stock index rise.

• The estimate of the growth of the stock index is significant and positive (for equity

securities) but the interaction term is significant and negative (for debt securities). This

suggests that the low-concentration type reallocates the portfolio more slowly in response

to the increase in the growth of the stock index.

We performed the same comparison analysis for the sub-samples with different shares

of invested assets and across time dimensions.

• The low-concentration type countries tend to underreact or react in the opposite

direction relative to the reaction of the high-concentration type countries.

Effect of Share of Invested Assets

Comparing Tables 3.9, 3.10, and 3.11 for the full time span (2001-2010) we see that the

share of assets invested plays a role in determining differences in portfolio investment

allocation between the concentration types. Having relatively low shares of invested assets

into the destination countries, the types tend to respond in different ways to changes in

risk factors, whereas, having high shares of invested assets, the types’ portfolio investment

decisions are not driven in a similar way in the response to both risk and growth factors.

• For the sub-sample with the share of invested assets equal to or below 1 percent,

the key variables, which trigger differences in the asset allocation decisions, are those

that measure risks, such as standard deviation of the long-term interest rate, standard

deviation of the stock index, and standard deviation of inflation, as well as long-term

interest rate.

• For the sub-sample with the share of invested assets above 1 percent and below 7

percent, determinants of dissimilarity in the portfolio investment decisions between the

types are those related to growth: for example, short- and long-term interest rates, stock

index growth, inflation, real effective exchange rate, GDP growth, and current account to

GDP ratio.

• For the sub-sample with the share of assets invested equal to or above 7 percent, both

risk and growth factors play a role in decoupling investment decisions of the types. The

list of variables with the significant estimates of the interaction terms includes long-term

interest rate, growth of stock index, real effective exchange rate, GDP growth, standard

deviation of stock index and stock index growth, and standard deviation of unemployment

rate.
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Time Effect

The estimation for the pre-crisis period (2001-2006, Tables 3.12–3.15) and during the crisis

years (2007-2010, Tables3.16–3.19) show slightly different results for the determinants of

portfolio investment.

• For the pre-crisis period, in general, variables which reflect macroeconomic conditions

are the key determinants which trigger different responses in the portfolio investment

allocations of low- and high-concentration types. Among such key determinants are

inflation, unemployment, real effective exchange rate, current account to GDP ratio,

government debt to GDP ratio, and standard deviation of unemployment rate.

• During the crisis period, variables which are informative about the profitability of

financial instruments and the health of the financial system have different impacts on

the asset allocation decisions of low- and high- concentration type countries. This set of

variables includes short- and long-term interest rates, stock index and stock index growth,

standard deviation of long-term interest rate, standard deviation of stock index and stock

index growth.

Policy Implications and Possible Extensions

The portfolio investments deserve high attention of policy makers since they were found to

be more volatile and are more prone to capital outflow. This volatility may be reinforced

during financial instability or economic slowdowns, and the outflows of the international

portfolio investments may amplify such economic troubles. While the investment of one

small EU country may be considered as negligible or not so influential, when aggregated

over all the EU members’ portfolio investments it can be quite substantial (Guiso et al.,

2004). Our analysis provides evidence that the EU members shares of the total portfolio

investments co-move together to a high degree. This actually implies that the recipient

countries may consider the portfolio investments coming from different EU countries as

originated from a single investor. This, in turn, should suggest to the policy makers of

the recipient countries that the portfolio capital outflows by the EU members will show a

high degree of correlation.

At the same time, we should stress the importance for policymakers of understanding

what types of EU investors a country attracts. Because the international portfolio inflows

may move in different directions, depending on the different types of country-investors,

we may expect that those destination countries that have both types of investors (high-
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and low-concentration) may benefit from these differences. On the other hand, we may

expect that destination countries with only one type of investors may suffer from a severe

capital outflow.

Consider a scenario in which a country has a high proportion of low-concentration

type country-investors. If a crisis or shock hits the economy and the main macroeconomic

variables exhibit higher than average volatility, it may trigger the withdrawal of capital

by low-concentration countries. This, in turn, may create an additional severe impact

on the macro variables and lead to a spiral of capital flight. On the other hand, the

high-concentration type tends to be more tolerant of the risk factors, which is why if the

country has both types of investors, the severe effect initiated by one type may be offset

by the different behavior in the response to macro variable changes of the other type.

These arguments suggest that one of possible extensions could be to test whether there

is an asymmetry in financial stability during the crisis between those countries that had

only high-concentration type investors versus those who had only low- concentration type

investors, and those who had both types. The second possible extension is to analyze

which type of country-investors introduces more volatility to the market and accelerates

financial contagion.

3.6 Conclusion

This chapter provides evidence that the EU members’ shares of the total portfolio

investments have a high correlation in the co-movements due to common factors. There

was some divergence in the co-movements during the financial crisis, which might have

resulted from higher segregation in the aftermath of the crisis.

At the same time, this chapter argues that there is some diversity in the investment

behavior of the EU members. In particular, we show that the investment type matters

in the EU members’ international portfolio investments. We find evidence that the

international portfolio investments of high-concentration countries (which invest heavily in

a particular subset of countries) and low-concentration countries (which invest in a broader

set of countries) respond differently to changes in macro variables. This fact can be driven

by differences in the investment strategies adopted. For example, high-concentration

investment type countries may look for more profitable opportunities and are more inclined

to tolerate risk in anticipation of earning higher returns. Low-concentration investment

type countries, on the other hand, may look for diversification in the first place. Since the
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strategies and motives are different across the investment types, one could expect different

responses to changes in the macroeconomic environment.

There is also evidence that the differences in responses depend on the share of invested

assets in the country of destination. We explain this finding by the fact that the share will

play a different role in the portfolio of different types of country-investors. For example,

the countries with a high share of invested assets are strategically important for the

high-concentration investment type because they represent the core of their portfolio. In

contrast, for the low-concentration type countries, the potential risk coming from the

countries with a high share of invested assets may be offset by diversified investments.

Finally, the differences in responses to changes in macroeconomic variables are especially

important during a crisis period: the two types of countries differ in both pre-crisis and

crisis periods, but the set of variables in which they differ varies for both of these periods.
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3.A Variables Construction and Data Sources

Table 3.4: The variables construction and sata sources

Variable Description Source
Dependent variable -
portfolio investment
position

Log of of total portfolio investment assets, or equity
securities, or debt securities to GDP ratio in yeart

CPIS

Short-term interest
rate

Mean of quarterly short-term interest rate in year t,
percent per annum

GDS

Long-term interest
rate

Mean of quarterly long-term interest rate in year t,
percent per annum

GDS

Stock index Mean of quarterly benchmark stock index in yeart GDS
Growth of stock index Log of the ratio of mean of quarterly stock index in year

t to mean of quarterly stock index in year t− 1
GDS

Unemployment rate Mean of quarterly unemployment rate in year t, percent GDS
CPI growth Mean of logarithm of the ratio of seasonally adjusted

consumer price index in the quarter to the consumer
price index in the previous quarter

IMF

Real effective
exchange rate

Mean of quarterly real effective exchange rate in year t IMF

GDP growth Log of real GDP in year t to real GDP in year t− 1 WEO
Current account of
GDP ratio

Current account balance to GDP ratio in current prices
in year t

WEO

Government debt to
GDP ratio

Ratio of government debt to GDP in current prices in
year t

WEO

SD of short-term
interest rate

Standard deviation over the year of quarterly
short-term interest rate in year t

GDS

SD of long-term
interest rate

Standard deviation over the year of quarterly long-term
interest rate in year t

GDS

SD of stock index Standard deviation over the year of quarterly
benchmark stock index in year t

GDS

SD of stock index
growth

Standard deviation over the year of quarterly
benchmark stock index growth in year t

GDS

SD of unemployment
rate

Standard deviation over the year of quarterly
unemployment rate in year t

GDS

SD of CPI growth Standard deviation over the year of CPI growth in year t IMF

CPIS - Coordinated Portfolio Investment Survey
WEO - World Economic Outlook
GDS - Global Data Source
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3.B Investment Types across Countries

Table 3.5: Investment types across countries

Countries that always stays high-
concentration type

Cyprus
Hungary
Ireland
Malta
Portugal
Romania
Spain

Countries that always stays
low-concentration

Denmark
Finland
France
Germany
Lithuania
Luxembourg
Netherlands
Slovenia

Countries that are high concentration
type before the crisis and low
concentration type during the crisis

Belgium
Bulgaria
Sweden

Countries that are low concentration
type before the crisis and high
concentration type during the crisis

None

Countries that change their type both during pre-crisis and crisis period

Austria low type
high type

years: 2004, 2005, 2007, 2008, 2009, and 2010
years: 2003

Czech Republic low type
high type

years: 2003, 2004, 2005, and 2006
years: 2001, 2002

Greece low type
high type

years: 2001, 2002, and 2003
years: 2004-2010

Italy low type
high type

years: 2001, 2009, and 2010
years: 2002, 2004, 2006, and 2007

Latvia low type
high type

years: 2010
years: 2006-2008

Poland low type
high type

years: 2006
years: 2001, 2004, 2005, 2007, 2009, and 2010

Slovak Republic low type
high type

years: 2007
years: 2001-2004, 2008-2010

United Kingdom low type
high type

years: 2001-2003
years: 2005-2010
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3.C Correlation Matrix

Table 3.6: Correlation matrix

Variables

total

assets to

GDP

equity

sec. to

GDP

debt sec.

to GDP

short-

term int.

rate

long-

term int.

rate

stock

index

growth

of stock

index

unempl.

rate

CPI

growth

real

effec.

ex.. rate

total assets to GDP 1.00

equity securities to GDP 0.85*** 1.00

debt securities to GDP 0.93*** 0.66*** 1.00

short-term int. rate -0.11** -0.08*** -0.11*** 1.00

long-term int. rate 0.03* -0.01 0.05*** 0.71*** 1.00

stock index -0.08*** -0.05*** -0.09*** 0.28*** 0.18*** 1.00

growth of stock index -0.01 0.02** -0.03*** 0.05*** -0.07*** 0.02** 1.00

unemployment rate -0.05*** -0.04*** -0.05*** 0.17*** 0.51*** 0.13*** 0.11** 1.00

CPI growth -0.07*** -0.06*** -0.08*** 0.045*** 0.21*** 0.15*** 0.34*** 0.09*** 1.00

real effec. exch. rate -0.08*** -0.04*** -0.09*** 0.00 -0.18*** 0.22*** -0.10*** -0.01 0.02*** 1.00

GDP growth -0.07** -0.02** -0.06*** -0.02** 0.01 0.04*** 0.06*** 0.06*** 0.19*** -.04***

current account to GDP -0.05*** -0.00 -0.09** -0.07*** -0.38*** -0.10*** 0.08*** -0.16*** 0.01 -0.04***

government debt to GDP 0.03*** 0.05*** 0.03*** 0.43*** -0.02* 0.44*** 0.05*** 0.18*** 0.11*** -0.02**

SD of short-term int. rate -0.07*** -0.05*** -0.07*** 0.75*** 0.46*** 0.04*** 0.06*** 0.13*** 0.25*** 0.07***

SD of long-term int. rate 0.00 -0.00 0.00 0.16*** 0.045*** 0.02* -0.12*** 0.22*** 0.04*** 0.06***

SD of stock index growth -0.06*** -0.07*** -0.05*** 0.33*** 0.13*** -0.01** -0.33*** 0.15*** 0.02*** 0.12***

SD of stock index -0.08 -0.06*** -0.09*** 0.31*** 0.25*** 0.73*** -0.01 0.15*** 0.10*** 0.18***

SD of unempl. rate -0.03 -0.04*** -0.01* 0.22*** 0.38*** 0.09*** 0.09*** 0.22*** 0.01 0.13***

SD of CPI growth -0.06 -0.07*** -0.05*** 0.48 0.05*** 0.01* 0.04*** 0.14** 0.25*** 0.02***

*** p<0.01, ** p<0.05 * p<0.1

Table 3.6 (continued): Correlation matrix

Variables

GDP

growth

current

account

to GDP

government

debt to

GDP

SD of

short-

term int.

rate

SD of

long-

term int.

rate

SD of

stock

index

growth

SD of

stock

index

SD of

unempl.

rate

SD of

CPI

growth

GDP growth 1.00

current account to GDP 0.04*** 1.00

government debt to GDP -0.10*** -0.33*** 1.00

SD of short-term int. rate -0.22*** 0.02** 0.33 1.00

SD of long-term int. rate -0.09*** -0.15*** 0.15*** 0.22*** 1.00

SD of stock index growth -0.26*** -0.10*** 0.11*** 0.39*** 0.27*** 1.00

SD of stock index -0.3*** -0.09*** 0.44*** 0.10*** 0.21*** 0.16*** 1.00

SD of unempl. rate -0.26*** -0.11*** 0.01 0.29*** 0.27** 0.29*** 0.11*** 1.00

SD of CPI growth 0.04*** -0.09*** 0.26*** 0.54*** 0.19*** 0.35*** 0.07*** 0.18*** 1.00

*** p<0.01, ** p<0.05 * p<0.1
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3.D Descriptive Statistics of the Variables

Table 3.7: The descriptive statistics of the variables

VARIABLES observations mean standard deviation minimum maximum

total portfolio assets to GDP ratio 11518 91.23 1461.20 -17.05 57077.25

equity securities to GDP ratio 9952 50.77 701.43 -15.53 27500.21

debt securities to GDP ratio 10333 52.51 889.87 -20.87 30981.24

short-term interest rate 1121 4.81 5.69 0.05 78.40

long-term interest rate 7305 4.41 1.50 0.99 11.73

stock index 11019 7289.21 11157.06 80.45 67276.90

growth of stock index 10966 0.02 0.05 -0.17 0.38

unemployment rate 12121 8.36 7.00 1.05 60.60

CPI growth 12983 0.01 0.01 -0.05 -0.14

real effective exchange rate 12983 101.73 12.53 70.69 230.79

GDP growth 12983 0.03 0.04 -0.19 0.19

current account to GDP ratio 12983 0.01 0.07 -0.30 0.27

government debt to GDP ratio 9347 0.44 0.66 -1.74 3.79

SD of short-term interest rate 11170 0.63 1.31 0.00 21.08

SD of long-term interest rate 7305 0.30 0.21 0.06 2.16

SD of stock index growth 10993 0.06 0.03 0.02 0.19

SD of stock index 11019 801.47 1496.83 3.28 12106.44

SD of unemployment rate 12121 0.38 0.41 0.00 3.34

SD of CPI growth 12983 0.01 0.01 0.00 0.46
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3.E Portfolio Investments Estimation Results

Table 3.8: Portfolio investments, 2001-2010

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment -0.91*** 0.92*** 0.92*** – – –
(0.02) (0.02) (0.02)

short-term interest rate -0.08 -0.09 -0.03 0.05 0.05 -0.02
(0.06) (0.08) (0.04) (0.07) (0.09) (0.05)

long-term interest rate 0.12 0.11 0.06 -0.12 -0.09 -0.02
(0.09) (0.09) (0.06) (0.09) (0.11) (0.07)

stock index -0.00* 0.00 -0.00*** 0.00 -0.00 0.00*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 2.89 9.49*** 1.72 -2.69 -0.14 -4.05*
(2.21) (3.24) (2.11) (2.31) (3.37) (2.12)

unemployment rate -0.01 -0.02 -0.01 0.01 0.02 0.02
(0.01) (0.01) (0.01) (0.02) (0.02) (0.02)

CPI -22.37* -38.08* -7.98 36.06** 58.22*** 10.39
(12.04) (19.82) (10.93) (14.01) (21.48) (12.56)

real effective exchange rate -0.00 -0.00 -0.01 0.00 0.01** -0.01
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

GDP growth -3.79* -0.19 -5.29*** 3.43 -1.31 4.51***
(1.88) (1.92) (1.88) (2.20) (2.37) (1.945)

current account to GDP ratio -0.39 -0.01 -0.54 0.78 0.06 0.79
(0.62) (0.77) (0.68) (0.77) (0.88) (0.95)

government debt to GDP ratio -0.09 -0.07 -0.06 0.17 0.05 0.07
(0.08) (0.08) (0.09) (0.12) (0.10) (0.12)

SD of short-term interest rate -0.15 0.00 -0.06 0.402 -0.01 0.17
(0.21) (0.28) (0.22) (0.27) (0.34) (0.27)

SD of long-term interest rate -0.13 0.01 -0.44* 0.11 0.07 0.49***
(0.23) (0.29) (0.26) (0.28) (0.35) (0.31)

SD of stock index growth 1.27 1.42 1.36 0.76 -3.28 0.13
(2.02) (2.41) (1.96) (2.61) (3.170) (2.45)

SD of stock index 0.00 -0.00 0.00 -0.00 0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate -0.02 -0.07 0.09 0.08 0.22 -0.17
(0.13) (0.145) (0.12) (0.19) (0.198) (0.16)

SD of CPI growth -5.23 82.91** -36.82 -45.87 -84.46** 7.81
(27.37) (35.61) (25.99) (32.86) (41.48) (28.79)

N observations 3,078 2,774 2,885
N of country-country id 537 511 518
N instruments 521 521 521
AR (1) p-value 0.00 0.00 0.000
AR (2) p -value 0.75 0.73 0.62
Hansen p-value 0.80 0.94 0.95

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.9: Portfolio investments, 2001-2010, share below or equal to 1%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.88** 0.89** 0.895***
(0.02) (0.02) (0.02) – – –

short-term interest rate -0.09 -0.07 0.02 0.05 0.06 0.11
(0.08) (0.11) (0.05) (0.09) (0.14) (0.07)

long-term interest rate 0.18 0.11 0.04 -0.11 -0.12 0.15
(0.11) (0.15) (0.08) (0.13) (0.18) (0.10)

stock index -0.00 0.00 -0.00*** 0.00 -0.00 0.00**
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 3.42 10.29** 4.83 0.82 6.41 -4.91
(3.43) (5.25) (3.68) (3.85) (5.78) (3.31)

unemployment rate 0.00 -0.01 0.00 -0.00 0.01 -0.01
(0.02) (0.02) (0.02) (0.02) (0.03) (0.02)

CPI -13.28 0.75 2.98 25.21 21.40 -5.91
(18.50) (26.74) (19.30) (18.64) (29.43) (19.69)

real effective exchange rate -0.00 -0.00 -0.00 0.00 0.01 -0.00
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

GDP growth -1.26 0.37 -1.23 1.83 2.37 -0.19
(2.38) (2.82) (2.63) (2.62) (3.77) (2.66)

current account to GDP ratio 0.47 1.10 1.38 0.15 -0.79 -1.24
(0.84) (1.13) (1.02) (1.04) (1.28) (1.37)

government debt to GDP ratio -0.06 -0.05 0.03 0.00 -0.01 -0.19
(0.09) (0.12) (0.104) (0.11) (0.14) (0.14)

SD of short-term interest rate 0.02 -0.11 0.09 0.25 0.23 -0.01
(0.29) (0.35) (0.35) (0.34) (0.43) (0.43)

SD of long-term interest rate -0.78** -0.099 -1.22*** 0.91* 0.19 1.55***
(0.37) (0.65) (0.44) (0.48) (0.81) (0.52)

SD of stock index growth 1.68 -0.04 1.91 3.36 0.28 1.23
(3.13) (4.02) (3.82) (4.12) (5.67) (4.72)

SD of stock index 0.00 -0.00* 0.00 -0.00 0.00 -0.00*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate -0.14 -0.19 0.03 0.08 0.23 -0.17
(0.15) (0.17) (0.17) (0.19) (0.25) (0.22)

SD of CPI growth 30.88 108.00** -0.87 -87.38** -103.10** -19.88
(33.11) (46.56) (33.62) (39.18) (51.26) (35.65)

N observations 1,447 1,213 1,276
N of country-country id 323 287 301
N instruments 478 473 475
AR (1) p-value 0.00 0.00 0.00
AR (2) p -value 0.99 0.15 0.69
Hansen p-value 1.00 1.00 1.00

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.10: Portfolio investment, 2001-2010, share in the range of 1% and 7%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.87*** 0.91*** 0.89***
(0.02) (0.02) (0.02) – – –

short-term interest rate 0.02 0.06 0.03 -0.09* -0.04 -0.15***
(0.04) (0.08) (0.04) (0.05) (0.08) (0.06)

long-term interest rate 0.01 0.04 -0.02 0.07 0.08 0.18**
(0.06) (0.08) (0.07) (0.07) (0.09) (0.09)

stock index 0.00 0.00 0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 3.44 16.31*** 3.02 -3.88*** -9.50*** -4.27**
(2.22) (3.72) (2.18) (2.07) (3.84) (2.09)

unemployment rate -0.01 -0.01 -0.01 -0.01 -0.04 -0.01
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

CPI -1.40 -38.19 16.64 6.89 64.57** 6.98
(11.43) (27.82) (10.67) (13.57) (28.25) (15.81)

real effective exchange rate 0.00 0.01 -0.01 0.01* 0.01* 0.00
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

GDP growth 8.43* 10.67*** 0.99 -3.10 -9.41** 1.56
(4.51) (3.74) (2.53) (4.59) (3.69) (2.53)

current account to GDP ratio 1.62* -0.46 0.74 -1.34 0.79 -2.22*
(0.84) (1.14) (0.94) (0.93) (1.28) (1.17)

government debt to GDP ratio -0.19 -0.15 -0.44** 0.18 0.13 0.35
(0.18) (0.14) (0.20) (0.20) (0.16) (0.23)

SD of short-term interest rate -0.08 0.13 0.08 0.20 -0.37 -0.12
(0.19) (0.36) (0.21) (0.27) (0.41) (0.24)

SD of long-term interest rate 0.21 0.25 0.15 -0.11 -0.08 -0.26
(0.21) (0.25) (0.22) (0.26) (0.27) (0.26)

SD of stock index growth 5.35** 4.70 7.13*** -3.77 -3.96 -4.54
(2.33) (3.24) (2.59) (3.03) (3.60) (3.02)

SD of stock index 0.00 0.00 0.00 -0.00 -0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate 0.85** 0.85* 0.22 -0.59 -0.52 -0.17
(0.35) (0.44) (0.16) (0.41) (0.47) (0.21)

SD of CPI growth -9.44 48.69 -19.60 -0.51 -17.15 -17.02
(32.29) (41.82) (34.85) (34.35) (53.96) (38.85)

N observations 1,091 1,018 1,072
N of country-country id 274 262 269
N instruments 496 490 496
AR (1) p-value 0.00 0.00 0.00
AR (2) p -value 0.47 0.96 0.43
Hansen p-value 1.00 1.00 1.00

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1

148



Table 3.11: Portfolio investments, 2001-2010, share equal to or above 7%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.82*** 0.91*** 0.92***
(0.04) (0.02) (0.02) – – –

short-term interest rate -0.05 -0.03 -0.04 0.00 0.04 0.00
(0.09) (0.09) (0.07) (0.09) (0.09) (0.06)

long-term interest rate 0.48* 0.43* 0.17 -0.18 -0.48* 0.09
(0.26) (0.26) (0.19) (0.25) (0.26) (0.16)

stock index 0.00* 0.00* 0.00 0.00 -0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 11.35** 17.30*** -2.43 -10.58** -18.03*** 0.45
(5.40) (5.44) (3.79) (4.62) (4.79) (3.44)

unemployment rate 0.04 -0.01 0.05 -0.03 0.01 -0.04
(0.04) (0.03) (0.04) (0.04) (0.03) (0.04)

CPI -15.82 -23.67 -32.35* 12.10 33.34 25.91
(19.64) (25.60) (17.86) (18.60) (25.01) (19.82)

real effective exchange rate -0.02*** -0.03*** -0.01 0.02* 0.03*** -0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

GDP growth 0.44 15.64*** -4.73 -2.65 -18.20*** 5.77
(4.78) (5.33) (3.07) (5.12) (4.88) (4.16)

current account to GDP ratio -1.06 3.35 -0.49 0.39 -1.90 0.08
(1.98) (2.29) (1.67) (2.22) (2.43) (1.79)

government debt to GDP ratio -0.73 -0.34 -0.06 0.23 0.63 -0.41
(0.46) (0.37) (0.34) (0.45) (0.59) (0.38)

SD of short-term interest rate -0.43 -0.21 0.15 0.34 0.34 0.03
(0.41) (0.39) (0.38) (0.47) (0.41) (0.44)

SD of long-term interest rate -0.59 -0.26 -0.48 -0.05 0.41 0.54
(0.47) (0.45) (0.35) (0.61) (0.48) (0.36)

SD of stock index growth 2.76 5.92 -3.76 -0.91 -10.11** 4.08
(4.31) (3.96) (3.25) (5.11) (5.06) (3.87)

SD of stock index 0.00 0.00 -0.00 -0.00 -0.00* 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate 0.66 1.07*** 0.07 -0.71 -1.03** -0.05
(0.46) (0.40) (0.19) (0.48) (0.43) (0.22)

SD of CPI growth -38.01 104.30 -77.68 -75.97 -87.56 1.74
(56.11) (68.72) (57.37) (66.54) (69.97) (66.91)

N observations 540 543 537
N of country-country id 124 129 124
N instruments 255 258 254
AR (1) p-value 0.07 0.07 0.05
AR (2) p -value 0.55 0.35 0.36
Hansen p-value 1.00 1.00 1.00

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.12: Portfolio investments, 2001-2006

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.88*** 0.89*** 0.91***
(0.03) (0.02) (0.03) – – –

short-term interest rate 0.11 0.05 0.03 -0.14* -0.11 -0.03
(0.07) (0.09) (0.05) (0.08) (0.11) (0.07)

long-term interest rate -0.04 -0.07 0.01 0.02 0.09 -0.01
(0.09) (0.11) (0.08) (0.09) (0.13) (0.09)

stock index 0.00 0.00 0.00 -0.00 -0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 6.33** 15.95*** 4.63 -5.13 -3.03 -5.69
(3.21) (3.94) (3.04) (3.75) (4.96) (3.71)

unemployment rate -0.01 -0.04 -0.01 0.03 0.05 0.02
(0.02) (0.03) (0.02) (0.03) (0.04) (0.03)

CPI -10.75 -24.30 15.38 51.26 67.86 -1.42
(33.55) (45.89) (23.11) (42.79) (57.55) (27.02)

real effective exchange rate -0.01 -0.01 -0.00 0.01** 0.01 0.00
(0.01) (0.01) (0.01) (0.00) (0.00) (0.00)

GDP growth 2.92 -0.07 0.86 -4.01 -2.63 -1.89
(4.41) (3.97) (4.46) (5.19) (4.81) (5.25)

current account to GDP ratio 2.49** 1.03 0.49 -2.06* -0.86 -0.11
(1.03) (1.36) (1.14) (1.27) (1.44) (1.55)

government debt to GDP ratio 0.14 0.13 0.02 -0.06 -0.13 0.01
(0.10) (0.11) (0.13) (0.13) (0.13) (0.16)

SD of short-term interest rate -0.89** -0.57 -0.29 1.47*** 0.79 0.45
(0.45) (0.53) (0.37) (0.55) (0.66) (0.44)

SD of long-term interest rate 1.07 0.74 -0.02 -0.74 -0.58 0.97
(0.83) (1.06) (0.72) (0.95) (1.17) (0.81)

SD of stock index growth 4.59 5.85 4.06 -3.63 -6.61 -1.47
(3.33) (4.34) (2.79) (3.66) (5.50) (3.17)

SD of stock index -0.00 -0.00 -0.00 0.00 0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate -0.09 0.31 -0.04 -0.13 -0.36 -0.29
(0.34) (0.42) (0.26) (0.45) (0.51) (0.36)

SD of CPI growth 15.33 131.80* -57.68 -100.70* -152.50* 13.91
(43.84) (67.28) (42.50) (55.09) (80.54) (45.60)

N observations 1,547 1,384 1,448
N of country-country id 495 457 467
N instruments 322 320 322
AR (1) p-value 0.00 0.00 0.00
AR (2) p -value 0.44 0.24 0.10
Hansen p-value 0.40 0.58 0.23

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.13: Portfolio investments, 2001-2006, share below or equal to 1%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.87*** 0.89*** 0.89***
(0.03) (0.02) (0.03) – – –

short-term interest rate 0.12 0.17 0.08 -0.21 -0.23 -0.14
(0.11) (0.16) (0.09) (0.14) (0.19) (0.14)

long-term interest rate 0.02 -0.10 0.06 0.09 0.13 0.07
(0.12) (0.18) (0.11) (0.15) (0.23) (0.16)

stock index -0.00 -0.00 -0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 10.95* 20.06*** 15.77** -6.52 6.12 -14.20*
(6.08) (7.49) (6.55) (7.15) (9.39) (6.57)

unemployment rate 0.03 -0.02 0.03 -0.04 0.04 -0.02
(0.04) (0.04) (0.05) (0.05) (0.05) (0.06)

CPI 7.20 79.69* 39.86 19.40 -60.25 -29.18
(45.54) (45.07) (41.28) (49.03) (60.34) (46.14)

real effective exchange rate -0.01 -0.00 -0.00 0.01 0.00 0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

GDP growth 1.77 -1.49 -0.56 -4.81 -3.17 -6.58
(7.63) (7.08) (8.46) (9.42) (8.77) (10.73)

current account to GDP ratio 4.23** 5.46** 2.50 -4.24* -6.43** -2.35
(1.89) (2.51) (1.84) (2.41) (2.98) (2.78)

government debt to GDP ratio 0.19* 0.23 0.11 -0.33* -0.31 -0.26
(0.12) (0.17) (0.14) (0.18) (0.25) (0.22)

SD of short-term interest rate -0.55 -0.60 -0.05 1.04* 1.18* 0.09
(0.51) (0.45) (0.59) (0.61) (0.61) (0.75)

SD of long-term interest rate -1.17 0.11 -1.49 2.76* 0.48 3.71***
(1.25) (1.34) (1.18) (1.59) (1.57) (1.33)

SD of stock index growth 9.73 -3.26 7.83 -7.04 1.39 -3.17
(6.68) (9.29) (5.66) (8.58) (12.26) (7.91)

SD of stock index -0.00 -0.00 -0.00 0.00 0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

SD of unemployment rate -0.38 -0.03 -0.27 0.19 -0.27 -0.07
(0.39) (0.39) (0.46) (0.51) (0.49) (0.64)

SD of CPI growth 27.89 165.20** -94.28 -111.50 -191.50** 49.98
(60.96) (82.73) (63.69) (76.63) (97.54) (73.19)

N observations 691 570 607
N of country-country id 261 222 230
N instruments 231 255 230
AR (1) p-value 0.00 0.01 0.00
AR (2) p -value 0.27 0.35 0.71
Hansen p-value 0.97 1.00 0.98

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.14: Portfolio investments, 2001-2006, share in the range of 1% and 7%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.878*** 0.89*** 0.91***
(0.02) (0.02) (0.02) – – –

short-term interest rate 0.14 0.08 0.00 -0.10 -0.02 -0.07
(0.09) (0.15) (0.07) (0.10) (0.15) (0.08)

long-term interest rate -0.15 -0.18 0.11 0.09 0.06 0.01
(0.16) (0.21) (0.09) (0.14) (0.19) (0.09)

stock index 0.00 0.00 -0.00 -0.00 -0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 8.58** 30.60*** 2.12 -1.07 -19.72** 1.76
(4.17) (6.89) (3.56) (4.69) (8.97) (4.12)

unemployment rate -0.02 -0.04 -0.02 0.01 0.02 0.00
(0.02) (0.03) (0.02) (0.03) (0.03) (0.02)

CPI -25.01 -127.50* -24.78 59.2** 176.40** 21.25
(22.10) (72.97) (22.09) (30.12) (82.03) (30.65)

real effective exchange rate -0.01 -0.029* -0.01 0.01** 0.012* 0.01*
(0.01) (0.02) (0.01) (0.00) (0.01) (0.00)

GDP growth 14.80*** 6.67 10.19*** -5.71 -2.81 -7.43
(5.72) (5.17) (4.41) (5.04) (6.19) (4.94)

current account to GDP ratio 1.77 -1.95 1.77 -0.72 3.79* -3.44**
(1.27) (1.99) (1.32) (1.40) (2.15) (1.69)

government debt to GDP ratio 0.17 -0.09 0.12 -0.15 0.14 -0.26
(0.21) (0.21) (0.20) (0.23) (0.25) (0.23)

SD of short-term interest rate -0.49 0.262 0.20 1.01** -0.04 -0.36
(0.34) (0.81) (0.34) (0.49) (0.98) (0.47)

SD of long-term interest rate 1.31 3.54* -0.27 -2.23 -3.80* 0.17
(1.78) (2.14) (0.86) (2.06) (2.31) (0.98)

SD of stock index growth 1.07 5.64 -0.65 0.13 -2.11 3.45
(3.97) (5.84) (3.65) (4.37) (6.12) (4.43)

SD of stock index -0.00 0.00 0.00* 0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate 1.62*** 1.58*** 0.25 -1.39** -1.57** -0.21
(0.46) (0.62) (0.44) (0.55) (0.66) (0.50)

SD of CPI growth 90.39 49.33 1.67 25.26 91.74 -31.27
(56.83) (73.23) (53.69) (40.96) (74.70) (32.37)

N observations 567 522 555
N of country-country id 230 217 225
N instruments 246 240 246
AR (1) p-value 0.03 0.00 0.00
AR (2) p -value 0.55 0.97 0.30
Hansen p-value 0.99 1.00 0.99

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.15: Portfolio investments, 2001-2006, share equal to or above 7%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.85*** 0.90*** 0.90***
(0.03) (0.03) (0.02) – – –

short-term interest rate -0.01 -0.26 0.16 -0.04 0.06 -0.09
(0.19) (0.21) (0.14) (0.11) (0.14) (0.09)

long-term interest rate 0.34 0.64 -0.19 -0.14 0.04 0.09
(0.42) (0.44) (0.26) (0.28) (0.28) (0.20)

stock index 0.00 -0.00 0.00 -0.00 -0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 15.72** 20.92** -6.30 -13.83* -6.93 -0.69
(7.31) (8.97) (4.76) (7.40) (8.77) (4.74)

unemployment rate -0.00 -0.05 0.00 -0.03 -0.02 0.02
(0.05) (0.04) (0.02) (0.06) (0.06) (0.03)

CPI 5.76 25.12 -86.54** -5.58 13.64 75.97*
(76.88) (55.39) (37.00) (82.79) (63.11) (40.60)

real effective exchange rate -0.02 -0.04** -0.00 0.02 -0.00 -0.00
(0.02) (0.02) (0.01) (0.01) (0.01) (0.09)

GDP growth 13.10 7.68 4.77 -16.74 -14.84 -5.28
(11.06) (10.52) (5.54) (13.50) (12.98) (7.21)

current account to GDP ratio -0.28 1.04 1.20 -0.59 3.09 -2.99
(2.22) (3.11) (2.14) (2.36) (3.35) (1.91)

government debt to GDP ratio -0.38 -0.57 0.34 0.88 2.27* -0.83
(0.33) (0.51) (0.41) (0.80) (1.18) (0.51)

SD of short-term interest rate -1.61*** -0.60 -0.91* 1.47* 0.82 0.88
(0.61) (0.68) (0.53) (0.78) (0.83) (0.67)

SD of long-term interest rate -0.09 0.84 -0.78 -0.91 0.94 0.29
(1.28) (1.57) (0.96) (0.98) (1.58) (0.83)

SD of stock index growth 5.44 5.75 -1.63 1.08 -6.49 6.63
(7.18) (5.94) (4.23) (9.38) (8.82) (6.56)

SD of stock index 0.00 0.00 -0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate 1.55*** 2.08*** -0.27 -1.77** -2.09*** 0.26
(0.52) (0.50) (0.55) (0.72) (0.66) (0.65)

SD of CPI growth -9.27 -81.26 14.70 -149.10 -72.06 -47.96
(110.40) (93.24) (97.25) (124.90) (104.40) (105.70)

N observations 289 292 286
N of country-country id 108 113 107
N instruments 126 129 126
AR (1) p-value 0.04 0.03 0.02
AR (2) p -value 0.65 0.62 0.11
Hansen p-value 0.99 0.99 1.00

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.16: Portfolio investments, 2007-2010

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.91*** 0.94*** 0.91***
(0.02) (0.02) (0.02) – – –

short-term interest rate -0.15* -0.19 -0.05 0.19 0.24 0.06
(0.09) (0.12) (0.05) (0.12) (0.16) (0.07)

long-term interest rate 0.25* 0.27 0.14 -0.31 -0.39 -0.15
(0.15) (0.19) (0.11) (0.20) (0.26) (0.14)

stock index -0.00** -0.00 -0.00** 0.00 -0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index -1.00 6.64 -1.19 0.91 4.68 -1.79
(3.44) (5.19) (3.17) (3.76) (5.75) (3.47)

unemployment rate -0.02 -0.02 -0.01 0.02 0.02 0.01
(0.02) (0.02) (0.02) (0.02) (0.03) (0.02)

CPI -32.22*** -47.03** -31.18** 36.14** 51.77** 21.74
(12.37) (20.26) (15.49) (15.57) (23.40) (19.78)

real effective exchange rate -0.01* -0.00 -0.01* 0.00 0.01* 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

GDP growth -0.84 4.01* -4.40* 2.36 -3.87 6.33**
(2.29) (2.41) (2.32) (2.56) (2.72) (2.48)

current account to GDP ratio -0.96 -0.68 -0.09 1.55 0.76 0.43
(0.83) (1.14) (0.90) (1.09) (1.42) (1.26)

government debt to GDP ratio -0.11 0.19 -0.02 0.23 0.25 0.05
(0.10) (0.14) (0.11) (0.15) (0.17) (0.15)

SD of short-term interest rate 0.35 0.35 0.15 -0.17 -0.42 0.07
(0.23) (0.35) (0.29) (0.28) (0.44) (0.36)

SD of long-term interest rate -0.57* -0.39 -0.63** 0.41 0.63 0.52
(0.29) (0.39) (0.29) (0.39) (0.52) (0.34)

SD of stock index growth -1.57 -0.37 -1.14 4.57 -1.19 2.90
(3.05) (3.56) (3.12) (3.73) (4.58) (4.09)

SD of stock index 0.00 -0.00 0.00 -0.00 0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate 0.08 -0.08 -0.01 0.06 0.29 0.20
(0.13) (0.14) (0.16) (0.17) (0.19) (0.20)

SD of CPI growth -7.37 54.66 6.56 4.38 -25.56 17.08
(30.46) (49.62) (33.54) (38.79) (60.85) (43.77)

N observations 1,531 1,390 1,437
N of country-country id 491 464 470
N instruments 365 362 268
AR (1) p-value 0.00 0.00 0.00
AR (2) p -value 0.38 0.45 0.54
Hansen p-value 0.23 0.59 0.32

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.17: Portfolio investments, 2007-2010, share below or equal to 1%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.87*** 0.89*** 0.88***
(0.03) (0.03) (0.02) – – –

short-term interest rate -0.19* -0.22 -0.02 0.24* 0.27 -0.02
(0.11) (0.15) (0.08) (0.13) (0.19) (0.089)

long-term interest rate 0.37** 0.34 0.13 -0.37 -0.41 0.01
(0.18) (0.28) (0.14) (0.23) (0.30) (0.16)

stock index -0.00 0.00 -0.00*** 0.00 -0.00 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index -3.91 6.20 -0.98 8.98* 12.29* -0.40
(4.74) (7.47) (4.41) (5.30) (7.45) (4.65)

unemployment rate -0.02 -0.02 -0.01 0.02 0.01 -0.02
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03)

CPI -24.66 -33.61 -7.43 12.84 40.25 -12.90
(19.22) (27.31) (22.17) (24.24) (29.54) (28.09)

real effective exchange rate -0.01* -0.01 -0.00 0.01 0.01 -0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

GDP growth -0.69 4.26 -0.90 4.23 0.43 3.05
(2.65) (2.95) (3.12) (2.93) (3.74) (3.32)

current account to GDP ratio -0.15 0.07 1.61 0.76 0.40 -1.68
(0.99) (1.38) (1.24) (1.29) (1.59) (1.58)

government debt to GDP ratio -0.02 -0.19 0.15 -0.07 0.12 -0.32*
(0.09) (0.14) (0.12) (0.13) (0.16) (0.17)

SD of short-term interest rate 0.49 0.25 0.35 -0.19 -0.35 -0.06
(0.31) (0.47) (0.41) (0.37) (0.54) (0.51)

SD of long-term interest rate -1.09** -0.75 -1.43*** 0.82 0.69 1.31**
(0.43) (0.82) (0.47) (0.53) (0.93) (0.58)

SD of stock index growth -3.56 -0.01 -4.12 11.27** 4.07 7.35
(3.86) (4.70) (4.39) (4.89) (6.31) (5.59)

SD of stock index 0.00 -0.00* 0.00 -0.00 0.00** -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate -0.03 0.02 -0.06 -0.06 0.05 0.18
(0.18) (0.15) (0.20) (0.20) (0.195) (0.26)

SD of CPI growth 92.13*** 78.86 92.33** 92.33** -59.82 -89.19*
(35.58) (60.78) (42.90) (42.90) (72.01) (53.98)

N observations 756 643 669
N of country-country id 274 246 253
N instruments 250 247 249
AR (1) p-value 0.00 0.03 0.00
AR (2) p -value 0.62 0.26 0.82
Hansen p-value 0.95 0.96 0.98

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.18: Portfolio investments, 2007-2010, share in the range of 1% and 7%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.86*** 0.93*** 0.88***
(0.03) (0.02) (0.03) – – –

short-term interest rate 0.09* -0.07 0.14** -0.18** -0.01 -0.29***
(0.06) (0.08) (0.06) (0.08) (0.09) (0.08)

long-term interest rate -0.14 0.07 -0.23** 0.32*** 0.06 0.51***
(0.09) (0.13) (0.09) (0.13) (0.15) (0.14)

stock index 0.00 -0.00 0.00 -0.00 0.00 -0.00**
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 2.14 11.69*** 4.32* -2.92 -1.14 -8.01***
(2.49) (4.32) (2.53) (2.51) (4.07) (2.88)

unemployment rate -0.02 -0.04 0.03 0.00 -0.01 -0.04
(0.02) (0.03) (0.02) (0.03) (0.04) (0.03)

CPI 0.17 -34.57 -14.47 -21.42 46.64 -20.92
(13.31) (27.40) (13.15) (15.08) (32.39) (18.98)

real effective exchange rate 0.01 0.02*** -0.01 -0.00 -0.00 0.00
(0.01) (0.01) (0.01) (0.00) (0.00) (0.00)

GDP growth 1.91 3.55 -0.95 2.26 -1.30 4.01
(5.82) (3.34) (3.16) (5.99) (3.66) (2.95)

current account to GDP ratio -0.42 -2.05* 0.02 0.86 1.74 -0.23
(0.88) (1.12) (1.09) (1.06) (1.29) (1.32)

government debt to GDP ratio -0.36 -0.18 -0.73*** 0.35 0.10 0.70**
(0.23) (0.22) (0.25) (0.25) (0.24) (0.28)

SD of short-term interest rate 0.23 0.17 0.38 -0.29 -0.59 -0.30
(0.23) (0.31) (0.29) (0.29) (0.41) (0.37)

SD of long-term interest rate 0.28 0.21 0.31 -0.44 -0.19 -0.71**
(0.25) (0.28) (0.25) (0.33) (0.33) (0.29)

SD of stock index growth 4.48 1.13 11.43*** -3.38 -1.28 -11.95**
(2.93) (4.88) (3.98) (3.78) (6.00) (4.79)

SD of stock index 0.00 0.00 -0.00 -0.00 -0.00 0.00*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate 0.33* 0.11 0.25 -0.17 0.24 -0.18
(0.17) (0.23) (0.17) (0.23) (0.29) (0.23)

SD of CPI growth -27.83 6.90 -35.30 25.26 91.74 -31.27
(42.10) (50.13) (39.12) (40.96) (74.70) (52.37)

N observations 524 496 517
N of country-country id 215 207 213
N instruments 299 252 252
AR (1) p-value 0.03 0.00 0.03
AR (2) p -value 0.96 0.37 0.09
Hansen p-value 1.00 1.00 0.99

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.19: Portfolio investments, 2007-2010, share equal to or above 7%

high concentration interaction term
total equity debt total equity debt

VARIABLES (1) (2) (3) (4) (5) (6)

portfolio investment 0.89*** 0.96*** 0.90***
(0.03) (0.03) (0.03) – – –

short-term interest rate -0.18* 0.15 -0.20* 0.16 -0.16 0.18
(0.11) (0.15) (0.12) (0.10) (0.14) (0.12)

long-term interest rate 0.34 -0.79 0.47 -0.16 -0.04 -0.24
(0.28) (0.36) (0.33) (0.27) (0.37) (0.34)

stock index 0.00* 0.00 0.00 -0.00* -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

growth of stock index 6.57 13.99 0.37 -8.53 -17.55* -3.97
(9.34) (9.99) (9.89) (7.69) (9.17) (9.15)

unemployment rate 0.09 0.01 0.11 -0.09 0.00 -0.11
(0.07) (0.02) (0.07) (0.07) (0.03) (0.07)

CPI -38.29 -22.09 -29.58 39.92 24.25 23.23
(23.97) (28.71) (23.53) (27.57) (28.90) (27.05)

real effective exchange rate -0.01 -0.00 -0.01 0.01 0.02 0.01
(0.01) (0.01) (0.01) (0.01) (0.014) (0.01)

GDP growth 6.42 8.78 6.50 -2.91 -10.09* -3.21
(6.09) (6.81) (8.00) (4.41) (5.54) (6.45)

current account to GDP ratio -4.87 2.15 -4.24 4.23 -2.08 3.55
(3.43) (3.66) (3.96) (3.58) (3.58) (4.09)

government debt to GDP ratio -2.03* 0.11 -1.87 1.56 -0.21 1.42
(1.06) (0.73) (1.14) (1.05) (0.72) (1.14)

SD of short-term interest rate 0.54 0.07 0.83 -0.29 -0.01 -0.43
(0.53) (0.63) (0.58) (0.49) (0.66) (0.52)

SD of long-term interest rate -0.48 0.19 -0.72 0.44 -0.11 0.93
(0.49) (0.75) (0.59) (0.48) (0.78) (0.64)

SD of stock index growth 3.65 5.74 2.74 -4.93 -11.68 -5.73
(6.94) (9.03) (7.89) (8.08) (9.27) (9.01)

SD of stock index 0.00* 0.00 0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SD of unemployment rate -0.38 0.23 -0.29 0.37 -0.38 0.29
(0.43) (0.30) (0.39) (0.39) (0.36) (0.36)

SD of CPI growth -18.94 234.60** -74.26 -50.39 -124.10 -24.06
(54.79) (97.19) (67.05) (62.24) (101.00) (71.01)

N observations 251 251 251
N of country-country id 97 97 97
N instruments 133 133 133
AR (1) p-value 0.11 0.11 0.08
AR (2) p -value 0.36 0.83 0.54
Hansen p-value 0.99 1.00 0.99

Robust standard errors are in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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